

交流漏电流传感器 CYCS11-xnL20

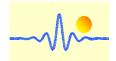
这款电流传感器基于磁调制和补偿原理,可用于测量交流小电流和漏电流,以及两个或多个导体之间的电流差。

产品特点:

- 计算机辅助老化技术的应用
- 100%老化处理,并在高工作温度下进行热漂移测试,以保证传感器的长期稳定性
- 可根据客户需求定制
- 可选择各种电流、电压输出
- 供电电源选项: +12VDC, +15VDC 和 24VDC 等.
- 传感器带有窗口, 便于非接触测量

应用领域:

- 交流电源系统和电缆选择系统的隔离监测
- 交流小电流和漏电流的测量等


电气参数

测量范围 M	10mA ~ 1A AC
线性范围	1.2 x M (测量范围)
额定输出信号	0-5V, 0-10V, 4-20mA DC
供电电压	+12VDC, +15VDC, +24VDC
电流消耗	20mA + 输出电流
电气隔离	2.5KV RMS/50Hz/ 1min
电流输出的测量电阻	≤250Ω

零位偏置热漂移	-25°C~+70°C	300	-40°C~+80°C	400	ppm/°C
响应时间		≤	120		ms
精度		±1.0			%
线性度		≤0.5			%FS
电偏置电压, TA=25°C		25			mV
磁偏置电压 (I _P =0)		20			mV

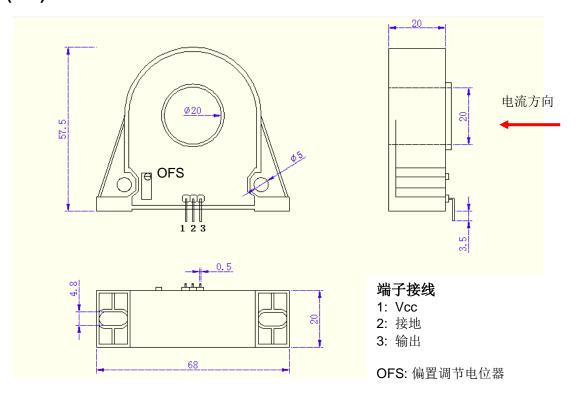
常规参数

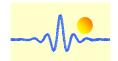
工作温度	-40 ~ +85	°C
储存温度	-40 ~ +85	°C
窗口大小	Ф20	mm
外壳尺寸 (高 x 长 x 宽)	68 x 57 x 24	mm

产品编号定义:

CYCS11	-	Х	n	L20	-	1.0	-	М
(1)		(2)	(3)	(4)		(5)		(6)

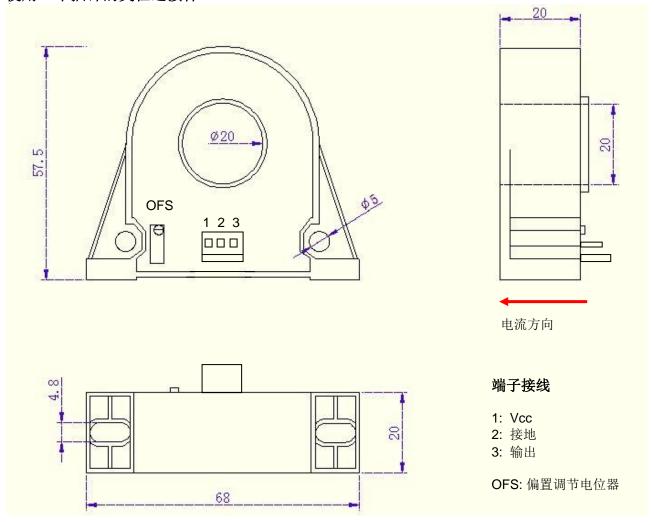
(1)	(2)	(3)	(4)	(5)	(6)
系列名称	输出信号	供电电压	外壳类型	精度	额定输入电流(m)
CYCS11	x=3: 0-5V DC x=8: 0-10V DC x=5: 4-20mA DC	n=2: +12V DC n=3: +15V DC n=4: +24V DC	M20A 带 Ø20 mm 孔径	1.0%	m = 10mA, 20mA, 50mA,100mA,200mA, 500mA, 1A

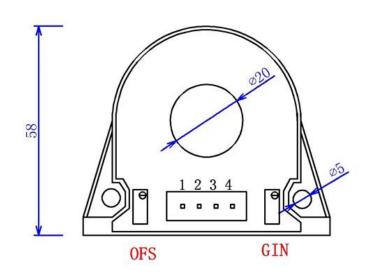

示例 1: CYCS11-34L20-1.0-1A, 交流电流传感器

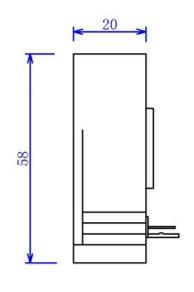

输出信号: 0-5V 直流 供电电源: +24V 直流 额定输入电流: 0-1A 交流

示例 2: CYCS11-54L20-1.0-1A, 交流电流传感器

输出信号: 4-20mA 直流 供电电源: +24V 直流 额定输入电流: 0~ 1A 交流

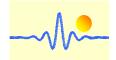

尺寸 (mm)




使用3个插针的莫仕连接件

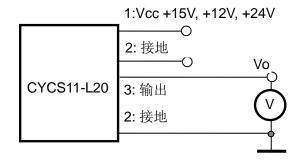
使用 4 引脚凤凰连接器




8 68

引脚安排

- Vcc
 未连接
 输出
 GND
- OFS: 偏移调整 GIN: 增益调整



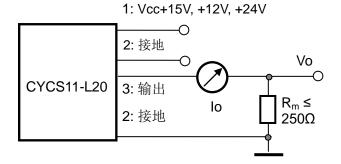
接线图

载流电缆必须穿过窗口。 输出相位应与外壳上箭头所指方向的电流相位相同。

a) 电压输出

- 1: Vcc +15V, +12V, +24V
- 2: 接地
- 3: 输出

输入与输出关系


传感器 CYCS11-34L20-1.0-U1A			
输入电流 (A)	输出电流 (V)		
0	0		
0.25	1.25		
0.5	2.5		
0.75	3.75		
1	5		

b) 电流输出

1: Vcc +15V, +12V, +24V

2: 接地

3: 输出

输入与输出关系 (R_m=250):

(14)1-200).				
传感器 CYCS11-54L20-1.0-U1A				
输入电流 (A)	输出电流 lo(mA)	输出电压 Vo (V)		
0	4	1		
0.25	8	2		
0.5	12	3		
0.75	16	4		
1	20	5		

注意事项:

- 1. 务必正确连接供电电源和输出端子,避免连错。
- 2. 仅在必要时,通过缓慢转动小螺丝刀调节两个电位器,以达到所要求的精度。
- 3. 当窗口完全被母线(载流导体)填满时,精度可以达到最高。
- 4. 如果载流导体的电流方向和传感器上箭头所指的方向相同,则可得到同相输出。