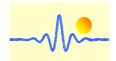


交/直流闭环霍尔电流传感器 CYHCS-B100

这款霍尔效应电流传感基于闭环补偿原理,可用于测量直流和交流电流、脉冲电流等,传感器输出反映了载流导线中电流的实际波形。

产品特点	应用			
 高精度 高线性度 小尺寸和封装 低功耗 电流过载能力 	 光伏设备 通用变频器 AC/DC 变速驱动器 电池供电应用 不间断电源 (UPS) 开关电源 			

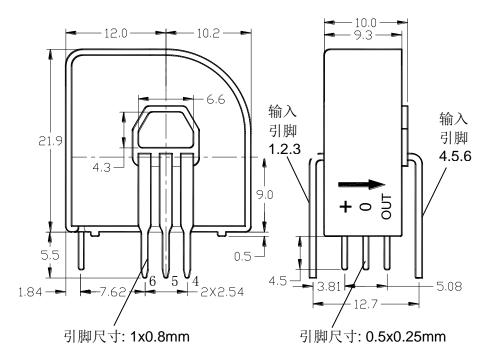
电气特性


产品工件号	CYHCS-B100- 6A	CYHCS-B100- 15A	CYHCS-B100- 25A	CYHCS-B100- 50A			
额定电流	6A	15A	25A	50A			
测量范围	18A	45A	75A	100A			
测量电阻	100Ω	50Ω	50Ω	25Ω			
次级线圈匝数	960±1	1200±1	2000±2	2000±2			
额定输出电压	+2.5VDC ± (0.625V±0.5%)						
供电电源	+5VDC ±5%						
电隔离	50Hz, 1min, >3kV						
冲击耐受电压	1.2/50µs, >8kV						
爬电距离	>15.5mm						

精度动态性能

零点偏置电压 +25°C	2.5±0.5%	V DC
偏置电压温漂(-25°C ~ +85°C)	Typ.: ±0.08, Max.: ±0.20	mV/°C
线性度	≤0.1	%FS
精度	±0.7	%
di/dt 跟随精度	>50	A/µs
响应时间	<500	ns
带宽 (-1db)	DC ~ 200	kHz

通用参数


工作温度	-25 ~ +85	°C
贮存温度	-40 ~ + 100	ů
电流消耗	<45	mA

尺寸 (mm)

接线图

初级匝数	额定电流 (A)	输出电压 (V)	初级电阻 (mΩ)	初级电感 (μH)	输入引脚连接
1	±6 (±15,±25,±50)	2.5±0.625	0.18	0.013	6 5 4 OUT
					IN 1 2 3
2	±3 (±7.5,±12.5,±25)	2.5±0.625	0.81	0.05	6 5 4 OUT
					IN 1 2 3
3	±2(±5,±8.3, ±16.6)	2.5±0.625	1.62	0.12	6 5 4 OUT
	= (==,==:=, = :=:=)				0 0 0 IN 1 2 3

使用说明

两种输入方式: 1)通过穿过传感器的电缆输入; 2) 通过输入引脚 PCB 输入。请选择使用其中一种输入模式。

在电缆输入模式下,电流电缆应穿过传感器孔,以传感器 CYHCS-B100-6A 为例,若电缆穿过孔一次,额定电流是 6A,若电缆穿过孔 2 或 3 次,额定电流是 3A 或 2A,在这种输入模式下,请勿使用引脚输入。

在 PCB 输入模式下,需根据如上表所示的输入引脚接线图连接传感器,3 线图与初级匝数 1,2 和 3 对应,在此输出模式下,请勿使用传感器孔输入。

http://www.cy-sensors.com

输入电流和输出电压关系

以传感器 CYHCS-B100-25A 为例, 输入电流和输出电压关系如表 1、图 1 和图 2 所示。

表 1. 输入电流和输出电压关系

输入电流 (A)	-75	-50	-25	-12.5	0	12.5	25	50	75
输出电压 (V)	0.625	1.25	1.875	2.188	2.5	2.813	3.125	3.75	4.375

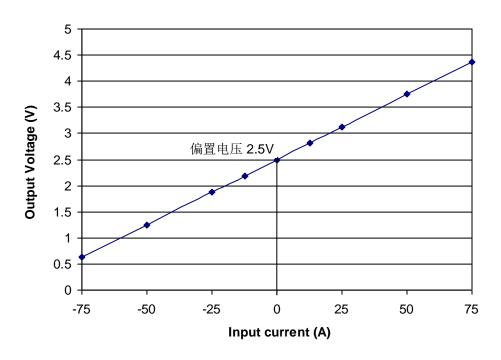


Fig. 1 输入电流(DC)与输出电压 (DC)关系

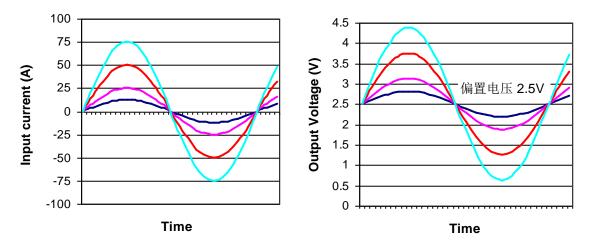


Fig. 2 输入电流(AC)与输出电压 (AC)关系