

AC/DC Split Core Hall Current Sensor CYHCS-C2T

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
Excellent accuracy	Frequency conversion timing equipment		
Very good linearity	Various power supply		
Light in weight	 Uninterruptible power supplies (UPS) 		
Less power consumption	Electric welding machines		
Window structure with split core	Numerical controlled machine tools		
Electrically isolating the output of the	Electrolyzing and electroplating equipment		
transducer from the current carrying conductor	Electric powered locomotive		
No insertion loss	Microcomputer monitoring		
Current overload capability	Electric power network monitoring		

Electrical Data

Primary Nominal Current I _r (A)	Primary Current Measuring Range I _p (A) at Vcc=12V	Output Voltage (analog) (V)	Part number
30	± 30	(arialog) (V)	CYHCS-C2T-30A-xnC
50	± 50	x=3: 2.5VDC±2.5V x=8: 5VDC ± 5V	CYHCS-C2T-50A-xnC
100	± 100		CYHCS-C2T-100A-xnC
200	± 200		CYHCS-C2T-200A-xnC
300	± 300		CYHCS-C2T-300A-xnC
400	± 400		CYHCS-C2T-400A-xnC
500	± 500		CYHCS-C2T-500A-xnC
600	± 600		CYHCS-C2T-600A-xnC

(n=2, *Vcc*= +12VDC; n=3, *Vcc* =+15VDC; n=4, *Vcc* =+24VDC, Connector: Molex connector C=M; Phoenix Connector: C=P)

Current Consumption $I_c < 25 \text{mA}$ RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min, $V_{is} < 10 \text{mA}$

Output Impedance: $R_{\rm out} < 150\Omega$ Load Resistor: $R_{\rm L} > 10 {\rm k}\Omega$ Accuracy at $I_{\rm P}$, $T_{\rm A}$ =25°C (without offset), X < 1.0%

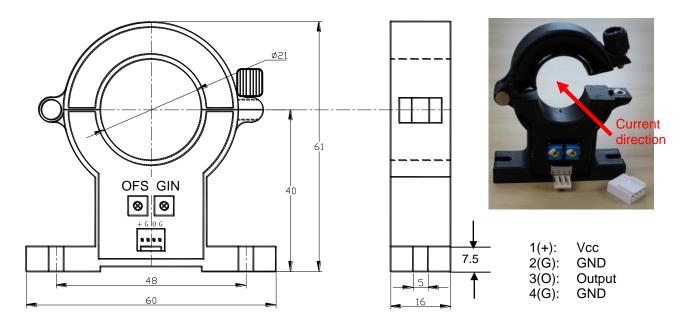
Linearity from 0 to I_r , T_A =25°C, E_L <1.0% FS Electric Offset Voltage, T_A =25°C, V_{oe} =2.5VDC±1.0% or 5VDC±1.0%

Magnetic Offset Voltage ($I_r \rightarrow 0$) $V_{om} < \pm 15 \text{mV}$ Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/°C}$ Thermal Drift (-10°C to 50°C) T C $< \pm 0.1\%$ /°C

Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 7\mu$ s Frequency Bandwidth (-3dB), $f_b = 0.20$ kHz

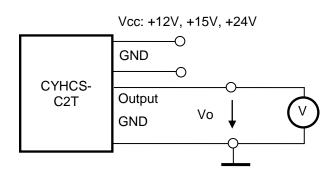
Mean Time Between Failures (MTBF):

General Data


Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Markt Schwabener Str. 8 D-85464 Finsing Germany Tel.: +49 (0)8121 – 2574100 Fax: +49 (0)8121 – 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com

50k - 100k hours


PIN Definition and Dimensions

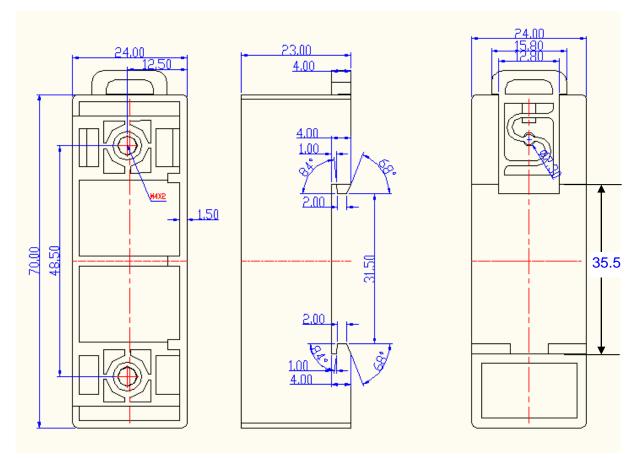
OFS: Offset Adjustment

GIN: Gain Adjustment

Connection

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer



DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom und the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom und the middle of hole is 54.8mm)