

AC/DC Split Core Hall Current Sensor CYHCS-C3T

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption 	 Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines
 Window structure with split core Electrically isolating the output of the transducer from the current carrying conductor 	 Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive
No insertion lossCurrent overload capability	 Microcomputer monitoring Electric power network monitoring

Electrical Data

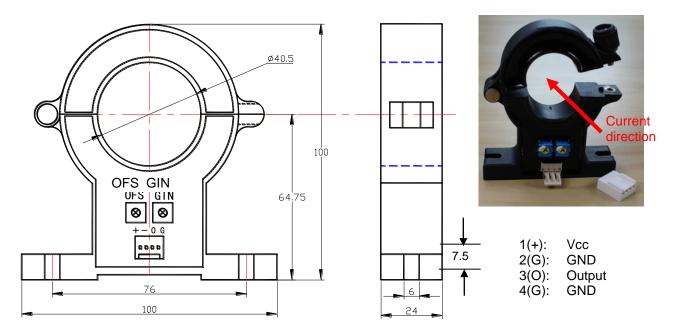
Primary Nominal Current I _r (A)	Primary Current Measuring Range I _p (A) at Vcc=12V	Output Voltage (analog) (V)	Part number
50	± 50		CYHCS-C3T-50A-xnC
100	± 100	x=3: 2.5VDC±2.5V x=8: 5VDC ± 5V	CYHCS-C3T-100A-xnC
200	± 200		CYHCS-C3T-200A-xnC
400	± 400		CYHCS-C3T-400A-xnC
500	± 500		CYHCS-C3T-500A-xnC
800	± 800		CYHCS-C3T-800A-xnC
1000	± 1000		CYHCS-C3T-1000A-xnC
1500	± 1500		CYHCS-C3T-1500A-xnC
2000	± 2000		CYHCS-C3T-2000A-xnC

(n=2, Vcc= +12VDC; n=3, Vcc =+15VDC; n=4, Vcc =+24VDC,

Connector: Molex connector C=M; Phoenix Connector: C=P)

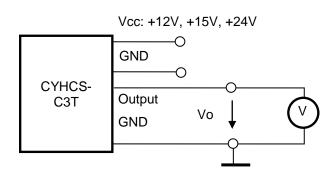
Current Consumption RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min,
Output Impedance:
Load Resistor:
Accuracy at I_r , T_A =25°C (without offset),
Linearity from 0 to I_r , $T_A=25^{\circ}$ C,
Electric Offset Voltage, $T_A=25^{\circ}$ C,
Magnetic Offset Voltage $(I_r \rightarrow 0)$
Thermal Drift of Offset Voltage,
Thermal Drift (-10°C to 50°C),
Response Time at 90% of $I_P(f=1 \text{ Hz})$
Frequency Bandwidth (-3dB),
Mean Time Between Failures (MTBF):

General Data


Ambient Operating Temperature, Ambient Storage Temperature,

Markt Schwabener Str. 8 D-85464 Finsing Germany $I_c < 25 \text{mA}$ $V_{is} < 10 \text{mA}$ $R_{out} < 150 \Omega$ $R_L > 10 k \Omega$ X < 1.0% $E_L < 1.0\%$ FS $V_{oe} = 5 \text{VDC} \pm 1.0\%$ or $5 \text{VDC} \pm 1.0\%$ $V_{om} < \pm 15 \text{mV}$ $V_{ot} < \pm 1.0 \text{mV/°C}$ T.C. $< \pm 0.1\%$ /°C $t_r < 7 \mu \text{s}$ $f_b = 0.20 \text{ kHz}$ 50 k - 100 k hours

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$


PIN Definition and Dimensions

OFS: Offset Adjustment

GIN: Gain Adjustment

Connection

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer