

Catalogue

Closed Loop Hall Effect AC/DC Current Sensors Transducers with Round Windows

Copyright© 2020, ChenYang Technologies GmbH & Co. KG

All rights reserved. No part of this catalogue may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright holder.

Contact Address:

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel:	+49 (0) 8121-25 74 100
Fax:	+49 (0) 8121-2574 101
Email:	info@chenyang.de
Internet:	www.chenyang.de

Contents

Hall Effect AC/DC Current Sensor CYHCS-B200	1
Hall Effect AC/DC Current Sensor CYHCS-LSP	4
Hall Effect AC/DC Current Sensor CYHCS-ES565	7
Hall Effect AC/DC Current Sensor CYHCS-ES5	10
Hall Effect AC/DC Current Sensor CYHCS-ES5A	13
Hall Effect AC/DC Current Sensor CYHCS-ES5B	16
Hall Effect AC/DC Current Sensor CYHCS-EC	19
Hall Effect AC/DC Current Sensor CYHCS-D1	21
Hall Effect AC/DC Current Sensor CYHCS-LTP/LTR	23
Hall Effect AC/DC Current Sensor CYHCS-D5	26
Hall Effect AC/DC Current Sensor CYHCS-LTHA	28
Hall Effect AC/DC Current Sensor CYHCS-D6	30
Hall Effect AC/DC Current Sensor CYHCS-LTHB	33
Hall Effect AC/DC Current Sensor CYHCS-D7	35
Hall Effect AC/DC Current Sensor CYHCS-D8	37
Hall Effect AC/DC Current Sensor CYHCS-SH	40
Hall Effect AC/DC Current Sensor CYHCS-LF	43

Hall Effect AC/DC Current Sensor CYHCS-B200

This Hall Effect current sensor is based on closed loop principle and designed with a high galvanic isolation between primary and secondary circuits. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Photovoltaic equipmentGeneral Purpose Inverters
Very good linearity	AC/DC Variable Speed Drivers
Small size and encapsulated	Battery Supplied Applications
Less power consumption	Uninterruptible Power Supplies (UPS)
Current overload capability	Switched Mode Power Supplies

ELECTRICAL CHARACTERISTIC

Part number	CYHCS-B200-10A	CYHCS-B200-20A	CYHCS-B200-25A	CYHCS-B200-40A			
Nominal current	10A	20A	25A	40A			
Measuring range	0 ~ 20A	0 ~ 40A	0 ~ 50A	0 ~80A			
Internal measuring resistance	100Ω±0.5%	50Ω±0.5%	40Ω±0.5%	40Ω±0.5%			
Turns ratio	1:1000	1:1000	1:1000	1:1600			
Nominal analogue output voltage		+2.5VDC ± (1V ± 0.5%)					
Supply voltage	+5V ±5%						
Galvanic isolation	50Hz,1min, 2.5kV						

ACCURACY DYNAMIC PERFORMANCE

Zero offset voltage Ta=25°C	2.5 ±0.5%	V
Thermal drift of offset voltage Ip=0, Ta-25°C ~ +85°C	≤ ±0.5	mV/°C
Measuring accuracy, Ta=25°C	≤±0.7	% FS
Linearity	≤±0.1	%FS
Following accuracy di/dt	50	A/µs
Response time	<0.5	μS
Bandwidth (-1db)	DC ~ 200	kHz
Load resistance	≥10	kΩ

GENERAL CHARACTERISTIC

Operating temperature	-25 ~ +85	°C
Storage temperature	-40 ~ +100	°C
Current consumption Ip=0	<45	mA

Relation between Input Current and Output Voltage

Take the sensor CYHCS-B200-30A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1. Relation between the input current and output voltage	Table 1.	Relation betweer	n the input currer	it and output voltage
--	----------	------------------	--------------------	-----------------------

Input current (A)	-60	-45	-30	-15	0	15	30	45	60
Output voltage (V)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5

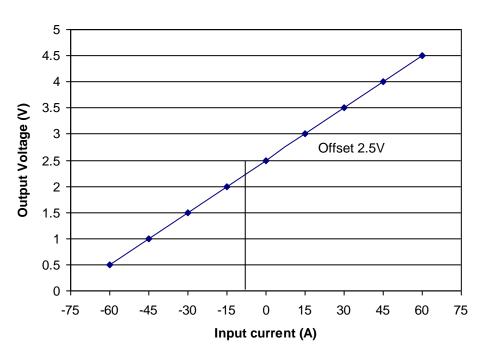


Fig. 1 Relation between the input current (DC) and output voltage (DC)

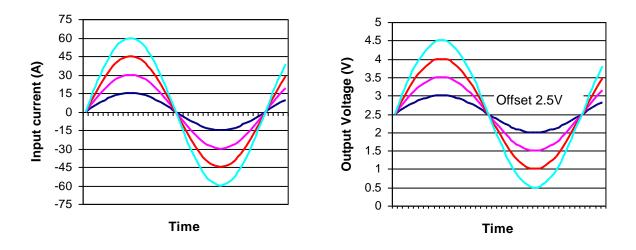


Fig. 2 Relation between the input current (AC) and output voltage (AC)

Dimensions (mm)

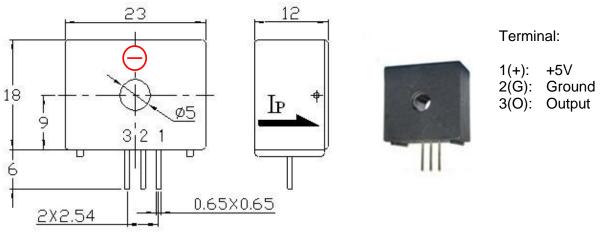


Fig. 3 Dimensions of CYHCS-B200-10A and CYHCS-B200-20A

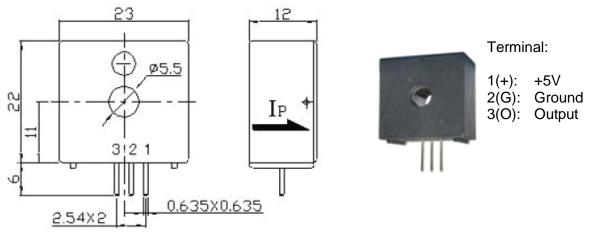


Fig. 4 Dimensions of CYHCS-B200-25A and CYHCS-B200-40A

Connection

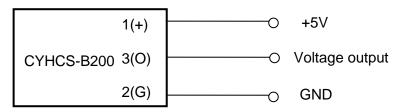


Fig. 5 Connection of CYHCS-B200

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. The in-phase output can be obtained when the current direction of current carrying conductor is the same as the direction of arrow marked above.
- 3. The best accuracy can be achieved when the window is fully filled with cable (current carrying conductor).

Hall Effect AC/DC Current Sensor CYHCS-LSP

This Hall Effect current sensor is based on closed loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies (UPS) Switched Mode Power Supplies

ELECTRICAL CHARACTERISTIC

Part number	CYHCS-LSP20A CYHCS-LSP			
Nominal current	20A 25A			
Measuring range	0 ~ ±20A 0 ~ ±25A			
Internal measuring resistance	100Ω±0.5% 100Ω±0.5%			
Turns ratio	1:1000 1:1250			
Nominal analogue output voltage	+2.5VDC ± (2V ± 0.5%)			
Supply voltage	+5VDC ±5%			
Galvanic isolation	50Hz,1min, 3kV			
Impulse withstand voltage	1.2/50µs, >8kV			
Creepage distance	>15.4mm			
Load capacity	≤ 10nF @ Vout and GND			

ACCURACY DYNAMIC PERFORMANCE

Zero offset voltage Ta=25°C	2.5 ±0.6%	V
Thermal drift of offset voltage Ip=0, Ta-25°C ~ +85°C	≤ ±0.5	mV/°C
Measuring accuracy, Ta=25°C	≤±0.7	% FS
Linearity	≤±0.1	%FS
Following accuracy di/dt	50	A/µs
Response time	<1.0	μS
Bandwidth (-1db)	DC ~ 200	kHz
Load resistance	≥10	kΩ

GENERAL CHARACTERISTIC

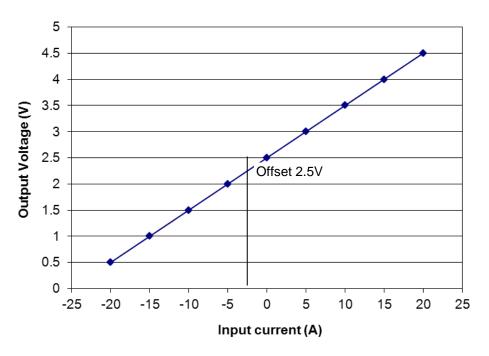
Operating temperature	-25 ~ +85	°C
Storage temperature	-40 ~ +100	°C
Current consumption Ip=0	10	mA
Unit weight	10	g

Relation between Input Current and Output Voltage

Take the sensor CYHCS-LSP-20A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1. F	Relation between	the input curren	it and output voltage
------------	------------------	------------------	-----------------------

Table I. Relation betw		nput oun	und und	i output	vonage	5			
Input current (A)	-20	-15	-10	-5	0	5	10	15	20
Output voltage (V)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5



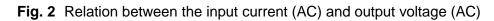


Fig. 1 Relation between the input current (DC) and output voltage (DC)

Dimensions (mm)

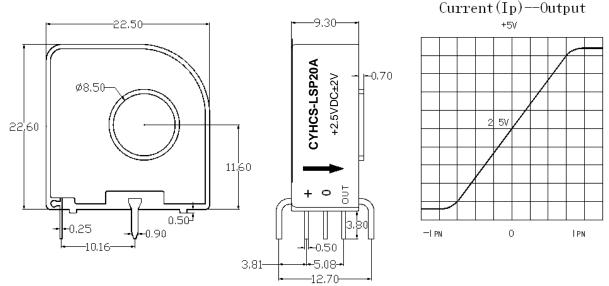


Fig. 3 Dimensions of CYHCS-LSF

Connection

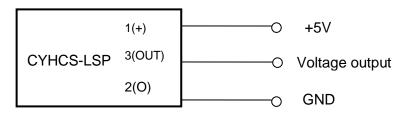


Fig. 4 Connection of CYHCS-LSF

Sizes and tolerances:

• Geometric tolerance: ±0.2mm

- Sizes of 3 pins: 0.25x0.5mm
- Size of mounting pins: 0.8x0.9mm
- Hole diameter: Φ8.5mm

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Pin arrangement

+:	+5VDC
O:	GND
OUT:	Output

Hall Effect AC/DC Current Sensor CYHCS-ES565

This Hall Effect current sensor is based on the closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications				
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies 				

Electrical Data

Part number	Primary Rated Current I _r (A)	Measuring Range <i>I_p</i> (A)	Turns ratio	Internal measuring resistor (Ω)
CYHCS-ES565-10A	10	± 32	1:1600	100±0.1%
CYHCS-ES565-25A	25	± 80	1:2000	50±0.1%
CYHCS-ES565-50A	50	± 150	1:1333	16.66±0.1%
CYHCS-ES565-75A	75	± 225	1:1500	12.5±0.1%
CYHCS-ES565-100A	100	± 240	1:1600	10.0±0.1%

Rated Output Voltage: Supply Voltage Reference voltage R: Electric Offset Voltage Current Consumption (at V_{out}=0V) Isolation voltage (50/60Hz, 1min) Accuracy: Linearity: Thermal Drift of Offset Voltage, Response Time: Di/dt following accuracy: Frequency Bandwidth (-1dB):

General Data

Ambient Operating Temperature: Ambient Storage Temperature:

> Markt Schwabener Str. 8 D-85464 Finsing Germany

+2.5V±0.625V±0.5%FS +5V±5%, +2.5VDC±0.5%FS +2.5VDC±0.5%FS <20mA 3.0kV 0.5%FS <0.1%FS ±0.2mV/°C <1.0µs 100A/µs DC ~ 200 kHz

-25°C ~ +85°C -40°C~ +100°C

Relation between Input Current and Output Voltage

Take the sensor CYHCS-ES565-25A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1. Relation between the input current and output	voltage
--	---------

Table II Relation between the input canon and capat vehage									
Input current (A)	-75	-50	-25	-12.5	0	12.5	25	50	75
Output voltage (V)	0.625	1.25	1.875	2.188	2.5	2.813	3.125	3.75	4.375

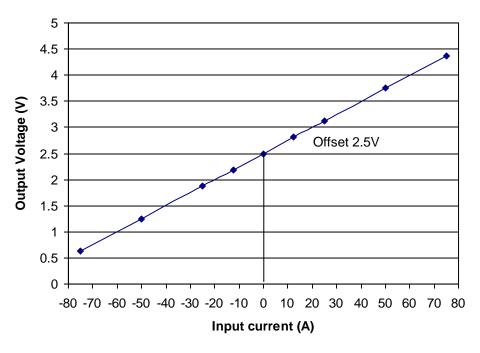


Fig. 1 Relation between the input current (DC) and output voltage (DC)

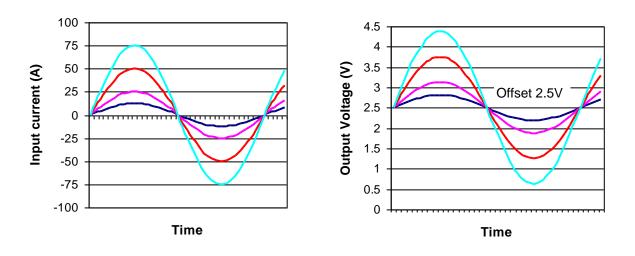


Fig. 2 Relation between the input current (AC) and output voltage (AC)

Dimensions (mm)

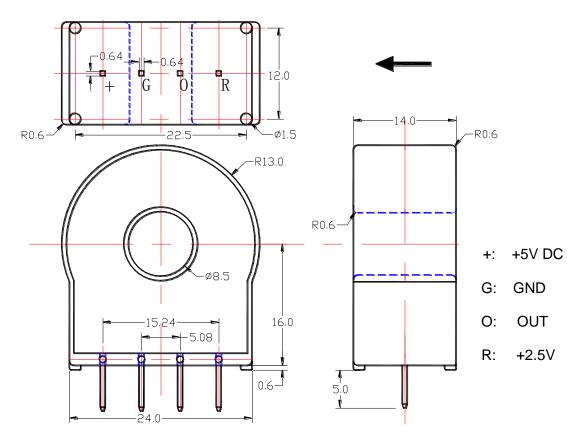
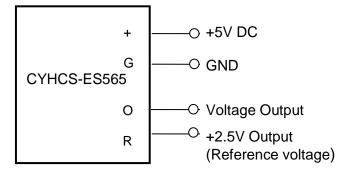



Fig. 3 Dimensions of CYHCS-ES565

Connection

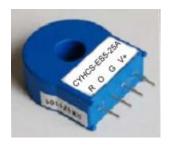


Fig. 4 Connection of CYHCS-ES565

- 1. Connect the pins of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.

Hall Effect AC/DC Current Sensor CYHCS-ES5

This Hall Effect current sensor is based on the closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

Electrical Data/Input

Part number	Primary Rated Current I _r (A)	Measuring Range I _p (A)	Turns ratio	Internal measuring resistor (Ω)
CYHCS-ES5-10A	10	± 22	1:1000	100±0.1%
CYHCS-ES5-25A	25	± 55	1:1250	50±0.1%
CYHCS-ES5-50A	50	± 110	1:1250	25±0.1%
CYHCS-ES5-75A	75	± 165	1:1500	20±0.1%
CYHCS-ES5-100A	100	± 220	1:2000	20±0.1%

Rated Output Voltage: Supply Voltage Reference voltage R: Electric Offset Voltage Current Consumption (at V_{out}=0V) Isolation voltage (50/60Hz, 1min) Accuracy: Linearity: Thermal Drift of Offset Voltage, Response Time: Di/dt following accuracy: Frequency Bandwidth (-1dB):

General Data

Ambient Operating Temperature: Ambient Storage Temperature:

> Markt Schwabener Str. 8 D-85464 Finsing Germany

+2.5V±1.0V ±0.5%FS +5V ± 5%, +2.5VDC ±0.5% FS +2.5VDC ±0.5%FS <20mA 3.0kV 0.5% FS <0.1% FS ±0.5mV/°C < 1.0µs 100A/µs DC ~ 200 kHz

-25°C ~ +85°C -40°C~ +100°C

Relation between Input Current and Output Voltage

Take the sensor CYHCS-ES5-25A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1	Relation betw	leen the innut	current and	output voltage
		een nie inpu	Current and	ouipui voitage

Table 1. Relation between the input our ent and output voltage									
Input current (A)	-55	-40	-25	-15	0	15	25	40	55
Output voltage (V)	0.3	0.9	1.5	1.9	2.5	3.1	3.5	4.1	4.7

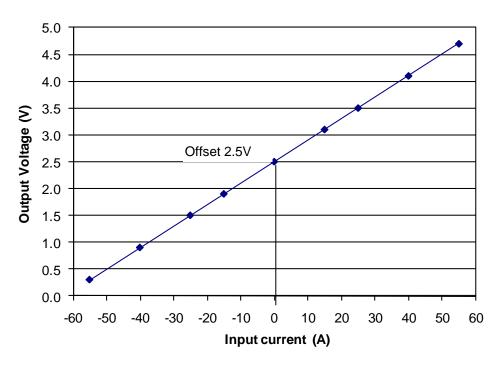
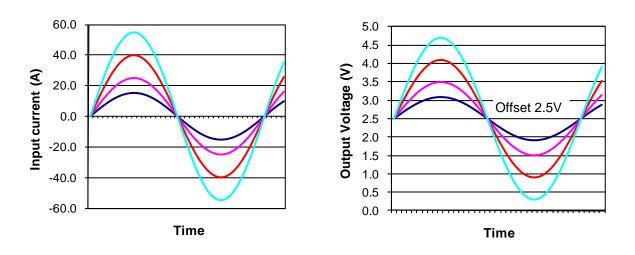
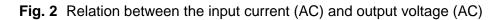




Fig. 1 Relation between the input current (DC) and output voltage (DC)

Dimensions (mm)

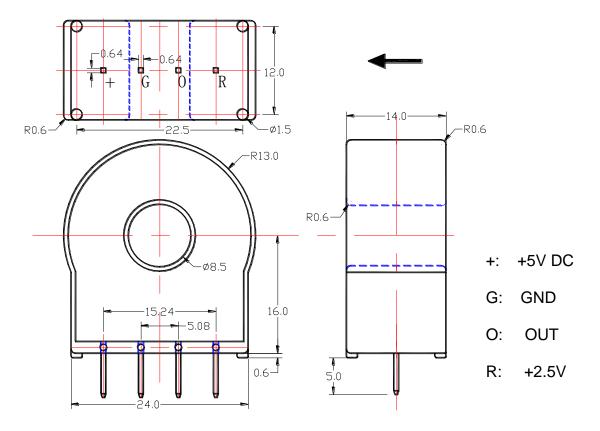
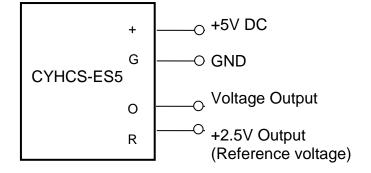



Fig. 3 Dimensions of CYHCS-ES5

Connection

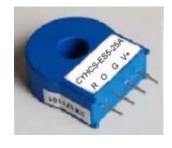


Fig. 4 Connection of CYHCS-ES5

- 1. Connect the pins of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.

Hall Effect AC/DC Current Sensor CYHCS-ES5A

This Hall Effect current sensor is based on the closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications				
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies 				

Electrical Data

Part number	Primary Rated Current I _r (A)	Measuring Range <i>I_p</i> (A)	Turns ratio	Internal measuring resistor (Ω)
CYHCS-ES5A-10A	10	± 30	1:1000	62.5±0.1%
CYHCS-ES5A-25A	25	± 75	1:2000	50±0.1%
CYHCS-ES5A-50A	50	± 150	1:2000	25±0.1%

Rated Output Voltage: Supply Voltage Reference voltage R: Electric Offset Voltage Current Consumption (at V _{out} =0V) Isolation voltage (50/60Hz, 1min) Max. isolation leakage current (3.5kVAC, 50/60Hz, 1min): Accuracy: Linearity: Thermal Drift of Offset Voltage, Response Time: Di/dt following accuracy: Frequency Bandwidth (-1dB):	+2.5V±0.625V ±0.5%FS +5V ± 5%, +2.5VDC ±0.5% FS +2.5VDC ±0.5% FS <20mA 3.0kV ≤10mA 0.5% FS <0.1% FS ±0.4mV/°C < 1.0µs 100A/µs DC ~ 200 kHz
General Data	
Ambient Operating Temperature:	-25°C ~ +85°C

Ambient Storage Temperature:

-25°C ~ +85°C -40°C~ +100°C

Relation between Input Current and Output Voltage

Take the sensor CYHCS-ES5A-25A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table1. Relation between the input current and output voltage

		inpac ea		a output	ronag	0			
Input current (A)	-75	-50	-25	-12.5	0	12.5	25	50	75
Output voltage (V)	0.625	1.25	1.875	2.188	2.5	2.813	3.125	3.75	4.375

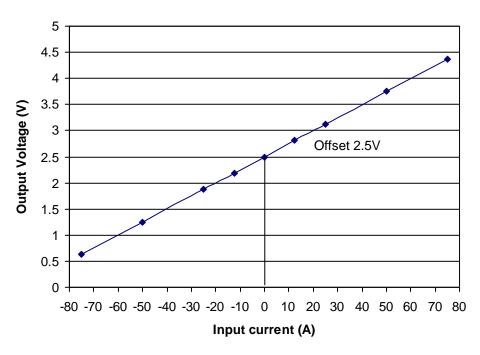


Fig. 1 Relation between the input current (DC) and output voltage (DC)

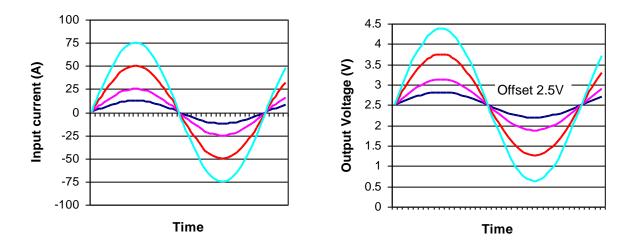
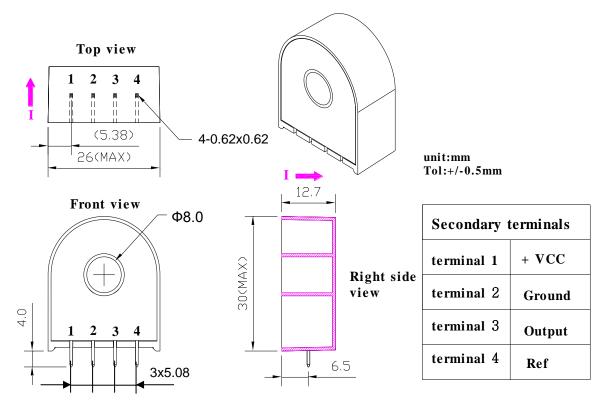
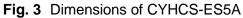




Fig. 2 Relation between the input current (AC) and output voltage (AC)

Dimensions (mm)

Connection

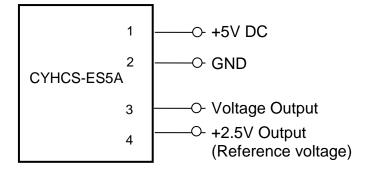


Fig. 4 Connection of CYHCS-ES5A

- 1. Connect the pins of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.

Hall Effect AC/DC Current Sensor CYHCS-ES5B

This Hall Effect current sensor is based on the closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

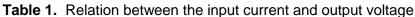
Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

Electrical Data/Input

Part number	Primary Rated Current <i>I</i> _r (A)	Measuring Range <i>I_p</i> (A)	Turns ratio	Internal measuring resistor (Ω)
CYHCS-ES5B-10A	10	± 22	1:1000	100±0.1%
CYHCS-ES5B-25A	25	± 55	1:1250	50±0.1%
CYHCS-ES5B-50A	50	± 110	1:1250	25±0.1%
CYHCS-ES5B-75A	75	± 165	1:1500	20±0.1%
CYHCS-ES5B-100A	100	± 220	1:2000	20±0.1%

Rated Output Voltage: Supply Voltage Reference voltage R: Electric Offset Voltage Current Consumption (at V_{out}=0V) Isolation voltage (50/60Hz, 1min) Accuracy: Linearity: Thermal Drift of Offset Voltage, Response Time: Di/dt following accuracy: Frequency Bandwidth (-1dB):

General Data


Ambient Operating Temperature: Ambient Storage Temperature: +2.5V±1.0V±0.5%FS +5V±5%, +2.5VDC±0.5%FS +2.5VDC±0.5%FS 20mA 3.0kV 0.5%FS <0.1%FS ±0.5mV/°C < 1.0µs 100A/µs DC ~ 200 kHz

-25°C ~ +85°C -40°C~ +100°C

Relation between Input Current and Output Voltage

Take the sensor CYHCS-ES5B-25A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Input current (A)	-55	-40	-25	-15	0	15	25	40	55
Output voltage (V)	0.3	0.9	1.5	1.9	2.5	3.1	3.5	4.1	4.7

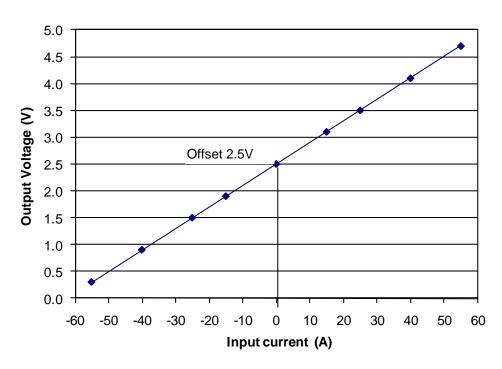


Fig. 1 Relation between the input current (DC) and output voltage (DC)

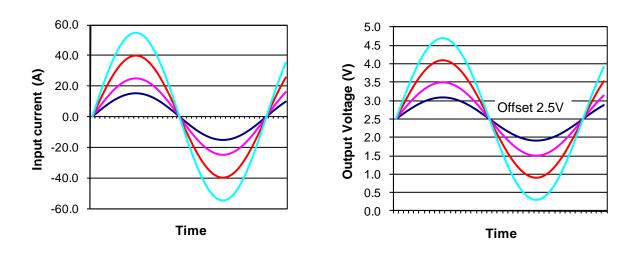


Fig. 2 Relation between the input current (AC) and output voltage (AC)

Dimensions (mm)

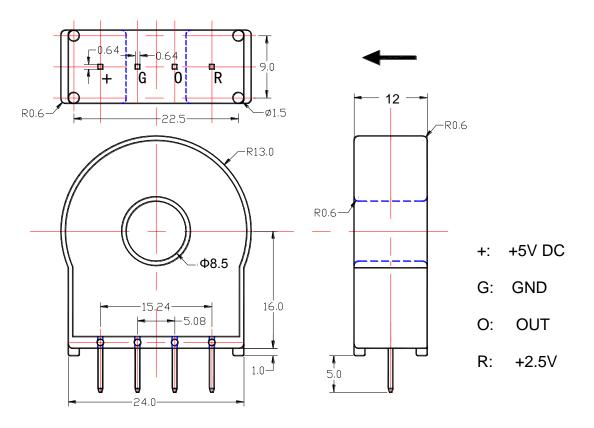


Fig. 3 Dimensions of CYHCS-ES5B

Connection

Fig. 4 Connection of CYHCS-ES5B

- 1. Connect the pins of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.

Hall Effect AC/DC Current Sensor CYHCS-EC/ECH

This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

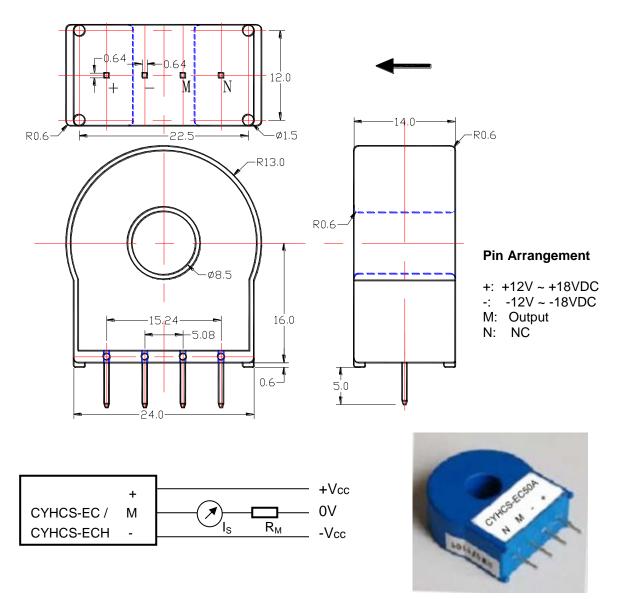
Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

ELECTRICAL DATA

Part number	CYHCS-EC50A/ CYHCS-ECH50A	CYHCS-EC75A/ CYHCS-ECH75A	CYHCS-EC100A/ CYHCS-ECH100A	CYHCS-EC200A/ CYHCS-ECH200A	Unit	
Nominal current	50	75	100	200	А	
Measuring range	150 (±18V, 82 Ω)	225 (±18V, 68 Ω)	300 (±18V, 51 Ω)	400 (±18V, 15 Ω)	Α	
Turns ratio	1:1000	1:1500	1:2000	1:2000		
Nominal analogue output current	50±0.5% / 50±0.2%	50±0.5% / 50±0.2%	50±0.5% / 50±0.2%	100±0.5% / 100±0.2%	mA	
Secondary coil resistance	30	45	50	55	Ω	
Supply voltage	±12 ~ ±18					
Current consumption	20 + output current					
Galvanic isolation		50HZ	, 1min, 3kV		kV	

ACCURACY DYNAMIC PERFORMANCE

Zero offset current	±0.2	mA
Thermal drift of offset current	-25°C ~ +85°C, ±0.005	mA/°C
Response time	<1	μs
Linearity	≤0.1	%FS
Bandwidth(-3dB)	DC150	kHz
di/dt following accuracy	>100	A/µs


GENERAL DATA

Operating temperature	-25 ~ +85	°C
Storage temperature	-40 ~ +100	°C

Markt Schwabener Str. 8 D-85464 Finsing Germany

Dimensions (mm)

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Hall Effect AC/DC Current Sensor CYHCS-D1

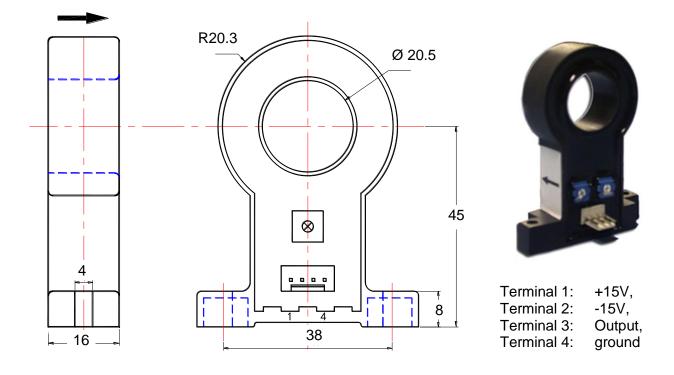
This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Current overload capability Good temperature properties 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies (UPS) Switched Mode Power Supplies

ELECTRICAL CHARACTERISTICS

Part number	CYHCS-D1-	CYHCS-D1-	CYHCS-D1-	CYHCS-D1-	CYHCS-D1-			
Rated current (RMS)	50A 50A	75A 75A	100A 100A	200A 200A	300A ±300A			
· · · · · · · · · · · · · · · · · · ·	50A	758	IUUA	200A	±300A			
Measuring range	±120A	±200A	±250A	±450A	±550A			
Turn ratio	1:1000	1:1500	1:1000	1:2000	1:3000			
Inner measuring resistance	80Ω±0.1%	80Ω±0.1%	40Ω±0.1%	40Ω±0.1%	40Ω±0.1%			
Load resistance			≥10kΩ					
(at rated current)								
Rated output voltage			4V ±0.5%					
Supply voltage	±15 VDC ±5%							
Galvanic isolation	3kV RMS/50Hz/1min,							
Current consumption		<14mA						

ACCURACY DYNAMIC PERFORMANCE


Zero offset voltage	±10mV
Thermal drift of offset voltage	±0.5mV/°C
Response time	<1.0µs
Accuracy	±0.5%
Linearity	≤0.1% FS
Bandwidth(-3dB)	DC ~ 150kHz

GENERAL CHARACTERISTIC

Operating temperature	-25°C~+85°C
Storage temperature	-40°C~+100°C

Dimensions (mm)

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-LTP/LTR

This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. The output from the current sensor is the balancing current which is a perfect image of the primary current reduced by the number of secondary turns. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies (UPS) Switched Mode Power Supplies

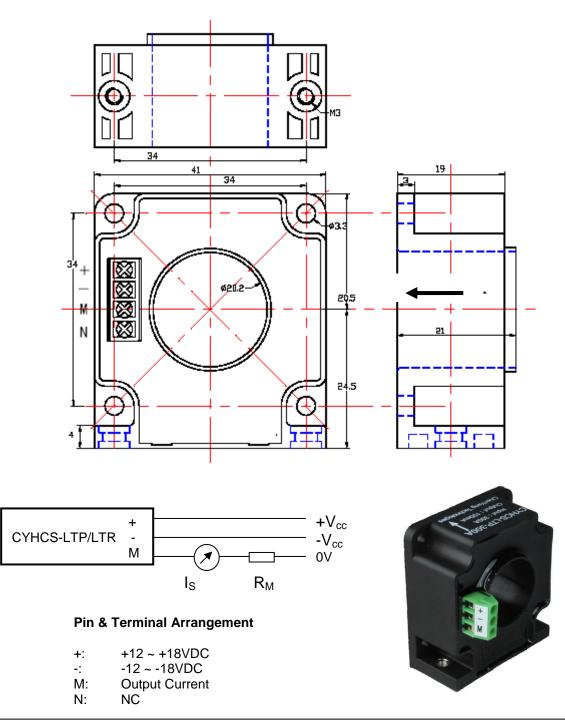
ELECTRICAL DATA

Part number	CYHCS-LTP/LTR100A	CYHCS-LTP/LTR200A	CYHCS-LTP/LTR300A	
Nominal current	100	200	300	А
Measuring range	300 (±18V, 20 Ω)	600(±18V, 30 Ω)	900 (±18V, 20 Ω)	А
Turns ratio	1:2000 (or 1:1000)	1:2000	1:3000	
		with±12V DC	÷	
	@±100Amax 80(max)	@±200Amax 80(max)	@±300Amax 76(max)	Ω
	@±200Amax 25 (max)	@±500Amax 27(max)	@±600Amax 22(max)	Ω
Measuring resistance with±15V DC				
	@±100Amax 110(max)	@±200Amax 120(max)	@±300Amax 100(max)	Ω
	@±200Amax 40(max)	@±500Amax 33(max)	@±600Amax 36(max)	Ω
Nominal analogue output current	50±0.5% (or 100±0.5%)	100±0.5%	100±0.5%	mA
Secondary internal resistance	25	20	30	Ω
Supply voltage	±12 ~ ±18±5%		V	
Current consumption	20 + output current		mA	
Galvanic isolation	50Hz, 1min, 6		KV	
MTBF	≥100k		hours	

ACCURACY DYNAMIC PERFORMANCE

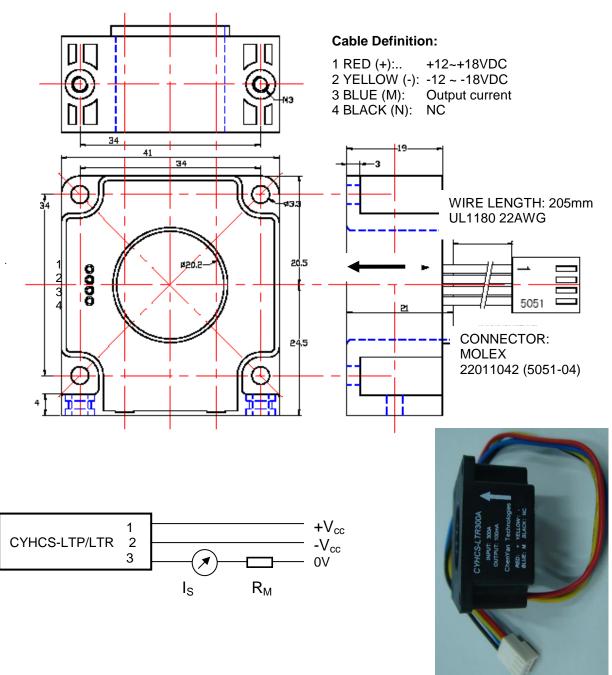
Zero offset current	±0.2	mA
Thermal drift of offset current	-40°C ~ +85°C, ±0.5	mA
Response time	<1	μs
Linearity	≤0.1	%FS
Bandwidth(-3dB)	DC100	kHz
di/dt following accuracy	>200	A/µs

Markt Schwabener Str. 8 D-85464 Finsing Germany



GENERAL DATA

Operating temperature	-40 ~ +85	°C
Storage temperature	-40 ~ +100	°C


Dimensions (mm)

With Terminal Connector (part number CYHCS-LTPxxxx)

With Cable and Molex Connector (part number CYHCS-LTRxxxx)

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 120 °C.
- 3. Dynamic performances (di/dt and the response time) are the best if the primary hole is completely filled with the bus bar.
- 4. The in-phase output can be obtained when the direction of primary current is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-D5

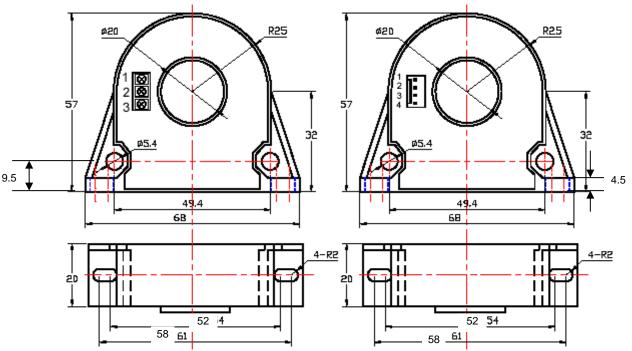
This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

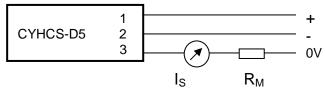
Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

ELECTRICAL DATA

Part number	CYHCS-D5S/M100A	CYHCS-D5S/M200A	CYHCS-D5S/M300A	
Nominal current	100	200	300	А
Measuring range	300 (±18V, 20 Ω)	600(±18V, 30 Ω)	900 (±18V, 20 Ω)	А
Turns ratio	1:2000	1:2000	1:2000 or 1:3000	
	with±12V DC			
	@±100Amax 80(max)	@±200Amax 80(max)	@±300Amax 76(max)	Ω
Manauring registeres	@±200Amax 25 (max)	@±500Amax 20(max)	@±600Amax 22(max)	Ω
Measuring resistance	easuring resistance			
	@±100Amax 110(max)	@±200Amax 120(max)	@±300Amax 100(max)	Ω
	@±200Amax 40(max)	@±500Amax 30(max)	@±600Amax 36(max)	Ω
Nominal analogue output current	50±0.5%	100±0.5%	150 ±0.5%or 100±0.5%	mA
Secondary internal resistance	25	21	32	Ω
Supply voltage	±12 ~ ±18		V	
Current consumption	±15VDC, 20 + output current		mA	
Galvanic isolation	50HZ, 1min, 6		KV	

ACCURACY DYNAMIC PERFORMANCE


Zero offset current	±0.2	mA
Thermal drift of offset current	-25°C ~ +85°C, ±0.5	mA
Response time	<1	μs
Linearity	≤0.1	%FS
Bandwidth(-3dB)	DC100	kHz
di/dt following accuracy	>200	A/µs

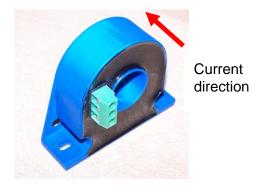

GENERAL DATA

Operating temperature	-25 ~ +85	°C
Storage temperature	-40 ~ +100	°C

Dimensions (mm)

Screw Connector (P/N: CYHCS-D5Sxxxx) DG300-5.0 Screw terminal block

Pin & Terminal Arrangement


1(+):	+15V
2(-):	-15V
3(M):	Output
۸. ´	NC

2(-): -15V 3(M): Output

4: NC

Operating instructions

Molex Connector (P/N: CYCS-D5Mxxxx) Molex 22011042, 5045-04AG, 5051-04

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 120 °C.
- 3. Dynamic performances (di/dt and the response time) are the best if the primary hole is completely filled with the bus bar.

High Accurate Hall Effect AC/DC Current Sensor CYHCS-LTHA

This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

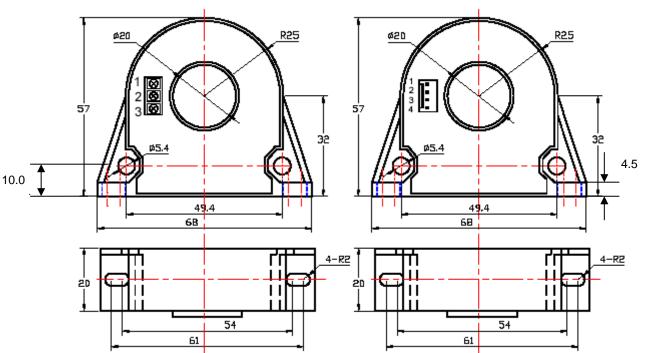
Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies (UPS) Switched Mode Power Supplies

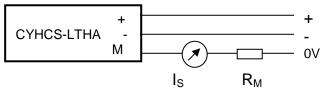
ELECTRICAL DATA

Part number	CYHCS-LTHA-100A	CYHCS-LTHA-200A	CYHCS-LTHA-300A	
Nominal current	100	200	300	Α
Measuring range	300 (±18V, 20 Ω)	600(±18V, 30 Ω)	900 (±18V, 20 Ω)	Α
Turns ratio	1:2000	1:2000	1:3000	
		with±12V DC		
	@±100Amax 80(max)	@±200Amax 80(max)	@±300Amax 76(max)	Ω
Magguring registeres	@±200Amax 25 (max)	@±500Amax 20(max)	@±600Amax 22(max)	Ω
Measuring resistance	with±15V DC			
	@±100Amax 110(max)	@±200Amax 120(max)	@±300Amax 100(max)	Ω
	@±200Amax 40(max)	@±500Amax 30(max)	@±600Amax 36(max)	Ω
Nominal analogue output current	50±0.2%	100±0.2%	100±0.2%	mA
Secondary internal resistance	25	21	32	Ω
Supply voltage	±12 ~ ±18			V
Current consumption	20 + output current			mA
Galvanic isolation	50Hz, 1min, 6			KV

ACCURACY DYNAMIC PERFORMANCE

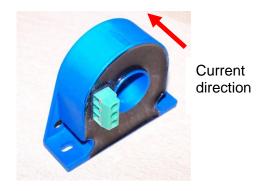
Zero offset current	±0.2	mA
Thermal drift of offset current	-25°C ~ +85°C, ±0.5	mA
Response time	<1	μs
Linearity	≤0.1	%FS
Bandwidth(-3dB)	DC150	kHz
di/dt following accuracy	>200	A/µs


Markt Schwabener Str. 8 D-85464 Finsing Germany Tel: +49 (0) 8121-25 74 100 Fax: +49 (0) 8121-25 74 101 Email: info@chenyang.de Internet: www.chenyang.de


GENERAL DATA

Operating temperature	-25 ~ +85	°C
Storage temperature	-40 ~ +100	°C

Dimensions (mm)


Screw Connection (P/N: CYHCS-LTHA2-xxxx) DG300-5.0 Connector

Pin & Terminal Arrangement

1(+):	+15V
2(-):	-15V
3(M):	Output
4:	NC

Molex Connection (P/N: CYCS-LTHA1-xxxx) Molex 22011042, 5045-04AG, 5051-04

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 120 °C.
- 3. Dynamic performances (di/dt and the response time) are best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Hall Effect AC/DC Current Sensor CYHCS-D6

This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

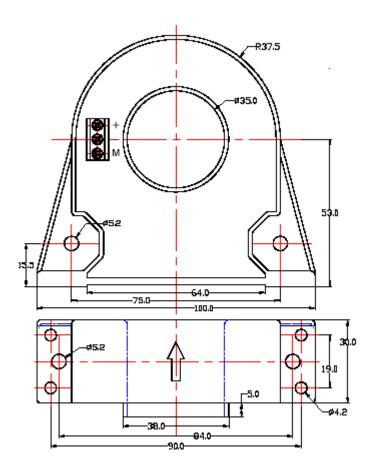
Product Characteristics	Applications	
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Good current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies 	

ELECTRICAL DATA

Part number	CYHCS-D6-300A (CYHCS-D6M-300A)	CYHCS-D6-500A (CYHCS-D6M-500A)	
Nominal current	300	500	А
Measuring range	600(±18V, 50 Ω)	1000 (±18V, 36 Ω)	А
Turns ratio	1:3000	1:5000	
	with±15V DC	with±12V~15V DC	
	@±300A max 110(max)	@±500Amax , 60~90(max)	Ω
	@±600A max 36(max) @±1000Amax, 10~ 25(max)		Ω
Measuring resistance	with±18VDC		
	@±300Amax 120(max)	@±500Amax 120(max)	Ω
	@±600Amax 50(max)	@±1000Amax 36(max)	Ω
Nominal analogue output current	100±0.5%	100±0.5%	mA
Secondary internal resistance	31	45	Ω
Supply voltage	±15 ~ ±24		V
Current consumption	±15VDC, 20 + output current		mA
Galvanic isolation	50HZ, 1min, 6		kV

ACCURACY DYNAMIC PERFORMANCE

Zero offset current	±0.2	mA
Thermal drift of offset current	-25°C ~ +85°C, ±0.5	mA
Response time	<1	μs
Linearity	≤0.1	%FS
Bandwidth(-3dB)	DC100	kHz
di/dt following accuracy	>100	A/µs

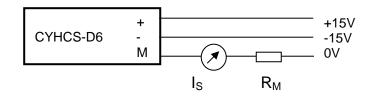


GENERAL DATA

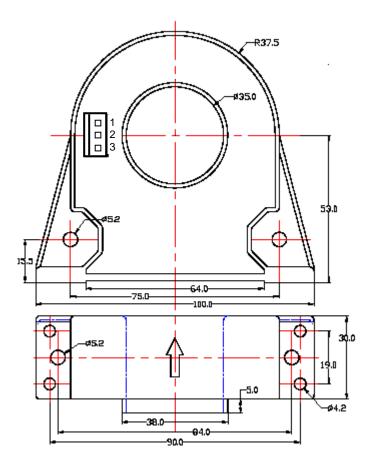
Operating temperature	-25 ~ +85	°C
Storage temperature	-40 ~ +100	°C

Dimensions (mm)

CYHCS-D6-xxxx

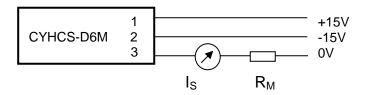


Terminal Arrangement


+:	+15V
-:	-15V
M:	Output

Screw connector: DG300-5.0 Screw terminal block

CYHCS-D6M-xxxx



Current direction

Terminal Arrangement

1:	+15V
2:	-15V
3:	Output

Molex Connector: Molex 22011042, 5045-04AG, 5051-04

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 120 °C.
- 3. Dynamic performances (di/dt and the response time) are best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

High Accurate Hall Effect AC/DC Current Sensor CYHCS-LTHB

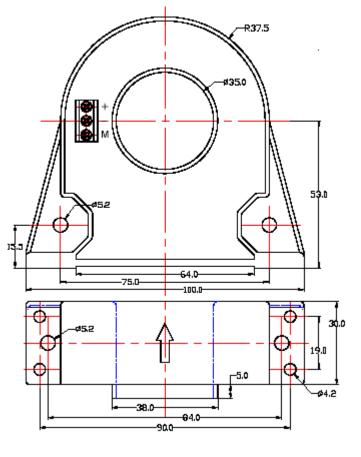
This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies (UPS) Switched Mode Power Supplies 	

ELECTRICAL DATA

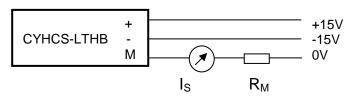
Part number				
raithunbei	CYHCS-LTHB-300A	CYHCS-LTHB-400A	CYHCS-LTHB-500A	
Nominal current	300	400	500	Α
Measuring range	900(±24V, 43 Ω)	1200 (±24V, 39Ω)	1500 (±24V, 30Ω)	А
Turns ratio	1:3000	1:4000	1:5000	
		with±15V DC		
	@±300A max 110(max)	@±500Amax 110(max)	@±500Amax 100(max)	Ω
Magguring registeres	@±600A max 36(max)	@±1000Amax 36(max)	@±1000Amax 25(max)	Ω
Measuring resistance	with±18VDC			
	@±300Amax 130(max)	@±500Amax 130(max)	@±500Amax 120(max)	Ω
	@±600Amax 51(max)	@±1000Amax 51(max)	@±1000Amax 39(max)	Ω
Nominal analogue output current	100±0.2%	100±0.2%	100±0.2%	mA
Secondary internal resistance	31	35	45	Ω
Supply voltage	±15 ~ ±24			V
Current consumption	20 + output current			mA
Galvanic isolation	50HZ, 1min, 6			kV

ACCURACY DYNAMIC PERFORMANCE


Zero offset current	±0.2	mA
Thermal drift of offset current	-25°C ~ +85°C, ±0.5	mA
Response time	<1	μs
Linearity	≤0.1	%FS
Bandwidth(-3dB)	DC150	kHz
di/dt following accuracy	>100	A/µs

GENERAL DATA

Operating temperature	-25 ~ +85	°C
Storage temperature	-40 ~ +100	°C


Dimensions (mm)

Current direction

Terminal Arrangement

+:	+15V
-:	-15V
M:	Output

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Hall Effect AC/DC Current Sensor CYHCS-D7

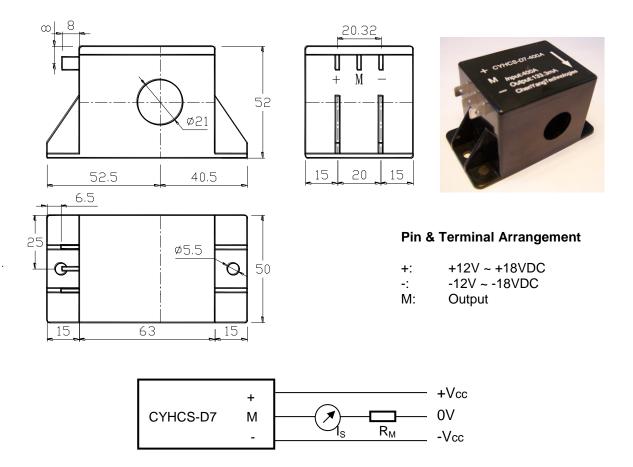
This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

ELECTRICAL DATA

Part number	CYHCS-D7-100A	CYHCS-D7-200A	CYHCS-D7-300A	CYHCS-D7-400A	
Nominal current	100	200	300	400	А
Measuring range	300 (±18V, 30 Ω)	600(±18V, 30 Ω)	600 (±18V, 30 Ω)	900 (±18V, 22 Ω)	А
Turns ratio	1:1000	1:2000	1:2000	1:3000	
Nominal output current	100±0.5%	100±0.5%	150±0.5%	133.3±0.5%	mA
Secondary internal resistance	25	25	21	35	Ω
Supply voltage	±12 ~ ±18			V	
Current consumption	20 + output current			mA	
Galvanic isolation	50Hz, 1min, 6			kV	

ACCURACY DYNAMIC PERFORMANCE


Zero offset current	±0.2	mA
Thermal drift of offset current	-10°C ~ +85°C, ±0.5	mA
Response time	<1	μs
Linearity	≤0.1	%FS
Bandwidth(-3dB)	DC150	kHz
di/dt following accuracy	>200	A/µs

GENERAL DATA

Operating temperature	-10 ~ +85	°C
Storage temperature	-25 ~ +100	°C

Dimensions (mm)

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Hall Effect AC/DC Current Sensor CYHCS-D8

This Hall Effect current sensor is based on closed loop compensating principle and can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current in the carrying conductor.

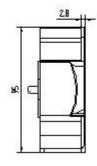
Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

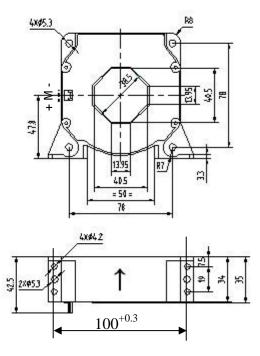
ELECTRICAL DATA

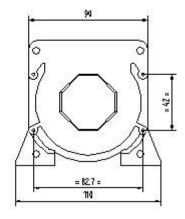
Part number	CYHCS-D8-500A	CYHCS-D8-1000A	
Nominal input current	500A	1000A	
Measuring range	800A	0-1500A ~ 0-2000A	
Turns ratio	1:5000	1:5000	
	with Vc=±15V, @±500Amax, 0-60Ω, @±800Amax, 0-12Ω,	with Vc=±15V, @±1000Amax, 0-15Ω, @±1200Amax, 0-4Ω	
Measuring resistance	with Vc=±24V, @±500Amax, 5-150Ω, @±800Amax, 5-65Ω	with Vc=±24V, @±1000Amax, 5-55Ω, @±1500Amax, 5-24Ω @±2000Amax, 5-16Ω	
Nominal output current	100mA ± 0.5%	200mA ± 0.5%	
Supply voltage	±15VDC ~ ±24VDC		
Current consumption	≤30mA + Output current at Vc=±15V		
Galvanic isolation	50Hz, 1min, 6KV		
Secondary internal resistance	Ta=25°	Ta=25°C, 40 Ω	

ACCURACY DYNAMIC PERFORMANCE

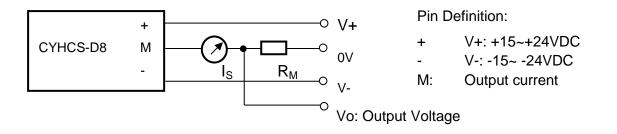
Zero offset current Ta=25°C	< ±0.4mA
Magnetic Offset current IP→0	< ±0.2mA
Thermal drift of offset current	IP=0, Ta=-25°C ~ +85°C, ±0.8mA
Response time	<1µs
Linearity	≤0.1%FS
Accuracy at +25°C	± 0.5% FS
Bandwidth(-3dB)	DC150kHz
di/dt	>100A/µs

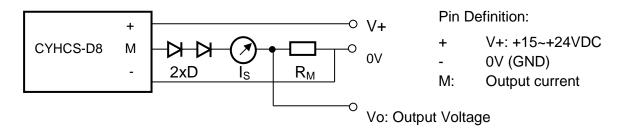

GENERAL DATA


Operating temperature	-25°C ~ +85°C
Storage temperature	-40°C ~ +100°C
Unit weight	510g


- 37 -

Dimensions (mm)


Molex Connector: 5045-03A



Sensor Connections

1) For Measurement of Bidirectional Current

2) For Measurement of Unidirectional Current

Two diodes for instance IN4007 must be connected at the output of the sensor in order to guarantee the sensor to work well.

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are the best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Precise Hall Effect AC/DC Current Sensor CYHCS-SH

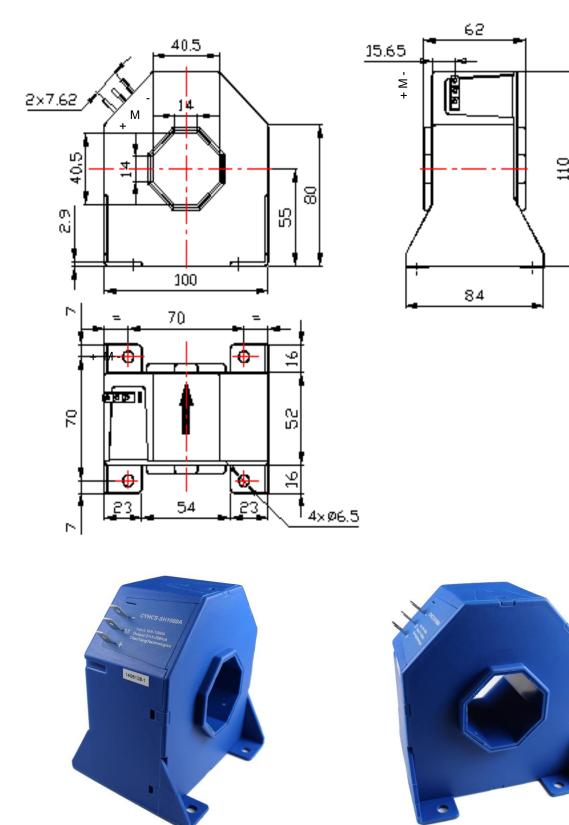
This Hall Effect current sensor is based on closed loop compensating principle and can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Accuracy independent on the position of premiary cable Lager measuring range 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

ELECTRICAL DATA

Part number	CYHCS-SH500A	CYHCS-SH1000A
Nominal input current	500A 1000A	
Measuring range	0-1500A	0-3000A
Turns ratio	1:5000 (1:4000 custom made)	
Measuring resistance	with Vc=±15V, @±1000Amax, 0-30Ω, @±1500Amax, 0-5Ω,	
	with Vc= $\pm 24V$, @ $\pm 1000Amax$, 0-68 Ω , @ $\pm 3000Amax$, 0-3 Ω ,	
Supply voltage	±15VDC ~ ±24VDC	
Nominal output current	100mA (125mA for 1:4000)	200mA (250mA for 1:4000)
Accuracy at +25°C	0.2%FS	
Current consumption	≤30mA + Output current at Vc=±15V	
Galvanic isolation	50Hz, 1min, 6KV	
Secondary internal resistance	Ta=25°C, 47 Ω (37 Ω for turns ratio 1:4000)	

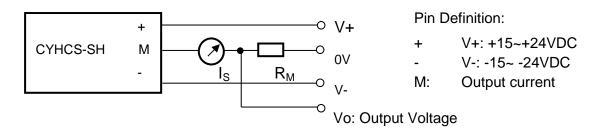
ACCURACY DYNAMIC PERFORMANCE


Zero offset current Ta=25°C	< ±0.2mA	
Magnetic Offset current IP→0	< ±0.2mA	
Thermal drift of offset current	IP=0, Ta=-40°C ~ +85°C, ±0.5mA	
Response time	<1µs	
Linearity	≤0.1%FS	
Accuracy	± 0.2% for rated current 100A ~1000A	
Bandwidth(-3dB)	DC150kHz	
di/dt	>100A/µs	

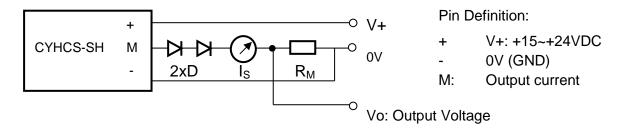
GENERAL DATA

Operating temperature	-40°C ~ +85°C
Storage temperature	-40°C ~ +100°C

Dimensions (mm)



Markt Schwabener Str. 8 D-85464 Finsing Germany



Sensor Connections

3) For Measurement of Bidirectional Current

4) For Measurement of Unidirectional Current

Two diodes for instance IN4007 must be connected at the output of the sensor in order to guarantee the sensor to work well.

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are the best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Precise Hall Effect AC/DC Current Sensor CYHCS-LF

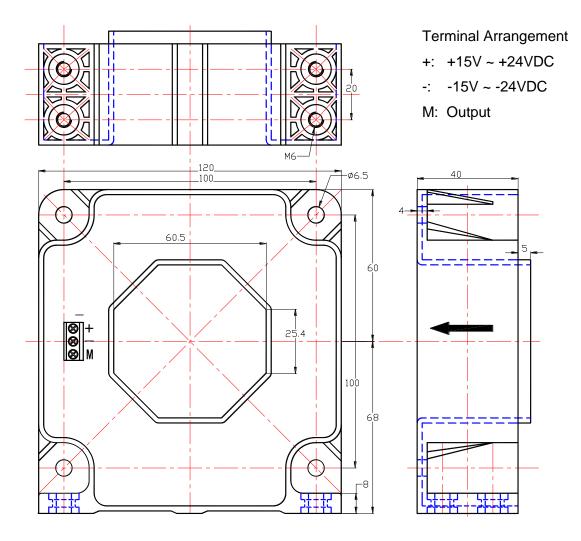
This Hall Effect current sensor is based on closed loop compensating principle and can be used for accurate measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies (UPS) Switched Mode Power Supplies

ELECTRICAL DATA

Part number	CYHCS-LF1000A	CYHCS-LF2000A
Nominal input current	1000A	2000A
Measuring range	0-2000A	0-3000A
Turns ratio	1:5000	
Measuring resistance	with Vc=±15V, @±2000Amax, 0-5.0Ω, @±2500Amax, 0-2.0Ω,	
	with Vc=±24V, @±2000Amax, 0-25 Ω , @±3000Amax, 0-10 Ω ,	
Supply voltage	±15VDC ~ ±24VDC	
Nominal output current	200mA	400mA
Accuracy at +25°C	±0.2% for rated current 1000A~2000A	
Current consumption	≤30mA + Output current	
Galvanic isolation	50Hz, 1min, 6kV	
Secondary internal resistance	Ta=25°C, 28 Ω	

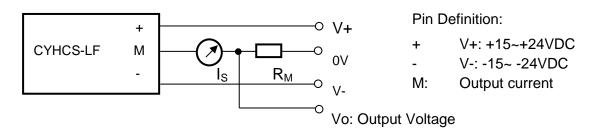
ACCURACY DYNAMIC PERFORMANCE


Zero offset current Ta=25°C	< ±0.2mA
Magnetic Offset current IP→0	< ±0.2mA
Thermal drift of offset current	IP=0, Ta=-25°C ~ +85°C, ±0.5mA
Response time	<1µs
Accuracy	± 0.2% for rated current 1000A~2000A
Linearity	≤0.1%FS
Bandwidth(-3dB)	DC150kHz
di/dt	>100A/µs

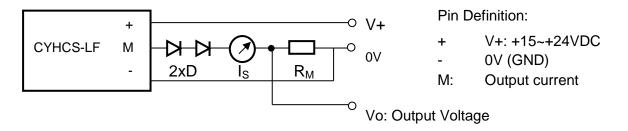
GENERAL DATA

Operating temperature	-25°C ~ +85°C
Storage temperature	-40°C ~ +100°C

Dimensions (mm)



Markt Schwabener Str. 8 D-85464 Finsing Germany



Sensor Connections

5) For Measurement of Bidirectional Current

6) For Measurement of Unidirectional Current

Two diodes for instance IN4007 must be connected at the output of the sensor in order to guarantee the sensor to work well.

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are the best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.