

Split Core Hall Effect AC/DC Current Sensor CYHCS-EKGT

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

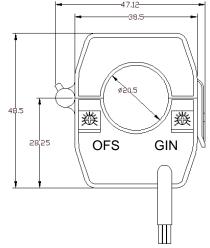
Primary Nominal	Primary Current	Output Voltage	Part number
Current I_r (A)	Measuring Range $I_p(A)$	(Analog) (V)	
50A	0 ~ ± 60A	2.5V±2V ±1.0%	CYHCS-EKGT-50A
100A	0 ~ ± 120A		CYHCS-EKGT-100A
200A	0 ~ ± 240A		CYHCS-EKGT-200A
300A	0 ~ ± 360A		CYHCS-EKGT-300A
400A	0 ~ ± 480A		CYHCS-EKGT-400A
500A	0 ~ ± 600A		CYHCS-EKGT-500A

Supply Voltage: V_{cc} =+12VDC ± 5% **Current Consumption** $I_c < 25 \text{mA}$ 2,5kV, 50/60Hz, 1min Isolation Voltage Output Voltage at I_r , T_A =25°C: $V_{\text{out}} = 2.5 \text{V} \pm 2 \text{V} \pm 1.0\%$ Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_{\rm L} > 10 {\rm k}\Omega$ Accuracy at I_{c} , T_{A} =25°C (without offset), X < 1.0% Linearity from 0 to I_r , $T_A=25$ °C, E₁ <1.0% FS Electric Offset Voltage, T_A=25°C, $V_{oe} = 2.5 V \pm 1.0\%$ Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 20 \text{mV}$ Thermal Drift of Offset Voltage, (-25°C~+85°C) V_{ot} <±0.5mV/°C T.C. < ±0.1% /°C Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$ Frequency Bandwidth (-3dB), $f_b = DC-20 \text{ kHz}$

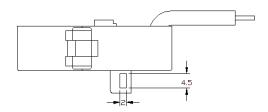
General Data

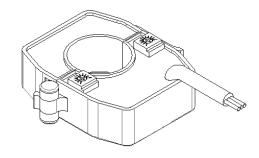
Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Tel.: +49 (0)8121 – 2574100


Fax: +49 (0)8121- 2574101

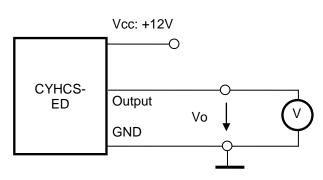
Email: info@cy-sensors.com http://www.cy-sensors.com

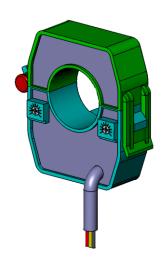

PIN Definition and Dimensions



OFS: Offset Adjustment

GIN: Gain Adjustment





Cable arrangement:

1 (red): Vcc

2 (yellow): OUTPUT 3 (black): OV (GND)

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer