

Split Core Hall Effect AC/DC Current Sensor CYHCS-EKT

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipments Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipments Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal	Primary Current	Output Voltage	Part number
Current I_r (A)	Measuring Range $I_p(A)$	(V)	
10A	0 ~ ± 20A	2.5V±1V ±1.0%	CYHCS-EKT-10A
20A	0 ~ ± 40A		CYHCS-EKT-20A
25A	0 ~ ± 50A	2.3V±1V ±1.0%	CYHCS-EKT-25A
50A	0 ~ ± 80A		CYHCS-EKT-50A

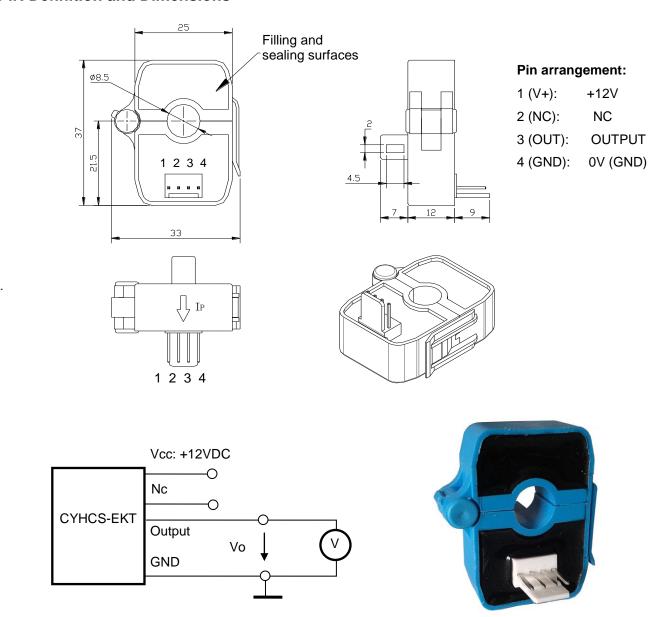
Supply Voltage: V_{cc} =+12VDC ±25% Current Consumption I_c < 10mA Isolation Voltage 2,5kV, 50/60Hz, 1min

Output Voltage at I_r , T_A =25°C: V_{out} =2.5V±1V ±1.0% Reverse Voltage: V_{rev} =18V >1hr Output Impedance: R_{out} < 150 Ω

Output Impedance: $R_{\rm out} < 150\Omega$ Load Resistor: $R_{\rm L} > 4.7 {\rm k}\Omega$

Accuracy at I_r , T_A =25°C (without offset), X < 1.0%Linearity from 0 to I_r , T_A =25°C, $E_L < 0.5\%$ FS Electric Offset Voltage, T_A =25°C, $V_{oe} = 2.5V \pm 25 \text{mV}$ Magnetic Offset Voltage ($I_r \rightarrow 0$) $V_{om} < \pm 20 \text{mV}$ Thermal Drift of Offset Voltage (Ip=0, -25°C~+85°C), $V_{of} < \pm 0.25 \text{mV}$ /°C

Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 7\mu$ s Frequency Bandwidth (-3dB), $f_b = DC-2.2$ kHz


General Data

Ambient Operating Temperature, T_A =-40°C ~ +85°C Ambient Storage Temperature, T_S =-55°C ~ +100°C Unit weight: 21g / unit

Markt Schwabener Str. 8 D-85464 Finsing Germany Tel.: +49 (0)8121 – 2574100 Fax: +49 (0)8121 – 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com

PIN Definition and Dimensions

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer