

Hall Effect AC/DC Current Sensor CYHCS-K210

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

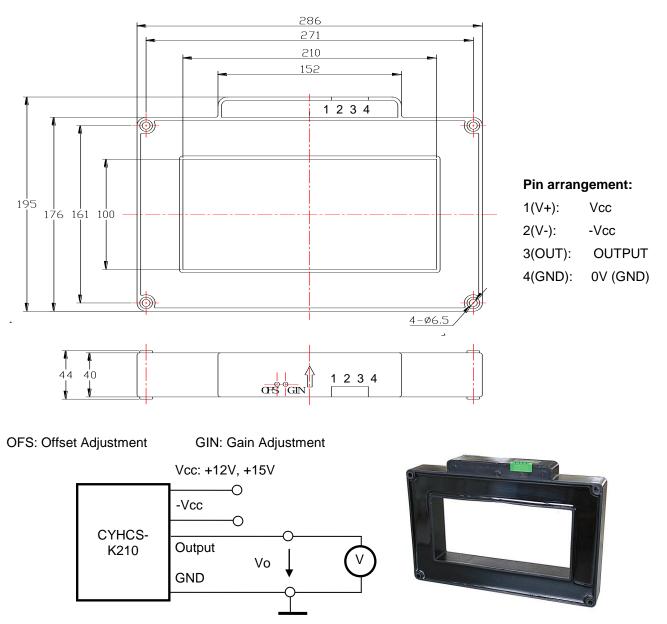
Primary Nominal Current <i>I_r</i> (A)	Primary Current Measuring Range $I_p(A)$	Output Voltage (Analog)(V)	Part number
3000A	0 ~ ± 3600A	4 ±1.0%	CYHCS-K210-3000A
4000A	0 ~ ± 4800A		CYHCS-K210-4000A
5000A	0 ~ ± 6000A		CYHCS-K210-5000A
6000A	0 ~ ± 7200A		CYHCS-K210-6000A
8000A	0 ~ ± 9600A		CYHCS-K210-8000A
10000A	0 ~ ± 12000A		CYHCS-K210-10000A
15000A	0 ~ ± 18000A		CYHCS-K210-15000A
20000A	0 ~ ± 22000A		CYHCS-K210-20000A

Supply Voltage: **Current Consumption** Isolation Voltage Output Voltage at I_r , $T_A=25^{\circ}C$: Output Impedance: Load Resistor: Accuracy at I_r , $T_A=25^{\circ}C$ (without offset), Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Linear Measuring range, Overload capability, Electric Offset Voltage, T_A=25°C, Magnetic Offset Voltage $(I_r \rightarrow 0)$ Thermal Drift of Offset Voltage, Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB),

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

Markt Schwabener Str. 8 D-85464 Finsing Germany


 $V_{cc}=\pm 12V \sim \pm 15VDC \pm 5\%$ *l_c* < 50mA 6kV, 50/60Hz, 1min V_{out}=4VDC $R_{\rm out} < 150\Omega$ $R_{\rm L} > 10 {\rm k}\Omega$ X <1.0% *E*_L <1.0% FS 1.2 times of measuring range 3 times of measuring range $V_{oe} < \pm 30 \text{mV}$ $V_{om} < \pm 40 \text{mV}$ $V_{ot} < \pm 1.0 \text{mV/°C}$ T.C. < ±0.1% /°C $t_r < 10 \mu s$ $f_b = DC-3 \text{ kHz}$

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Tel.: +49 (0)8121 – 2574100 Fax: +49 (0)8121 – 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com Version 2 Released in May 2016 Dr.-Ing. habil. Jigou Liu

PIN Definition and Dimensions

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer