

Split Core Hall AC/DC Current Sensor CYHCS-KF2

This Spilt Core Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

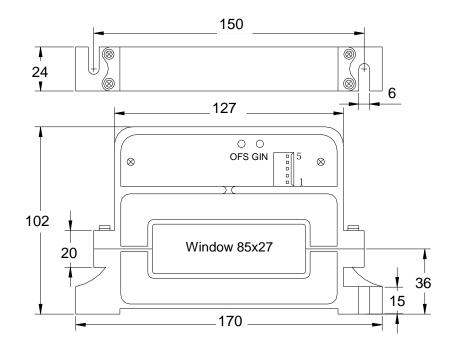
Product Characteristics	Applications		
 Excellent accuracy Very good linearity With Split Core, easy installation Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss 	Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring		
 Current overload capability 	Electric power network monitoring		

Electrical Data

Primary Nominal	Measuring Range	Output voltage	Window size	Part number
Current I_r (A)	(A)	(Analog) Vo	(mm)	
500	± 1000			CYHCS-KF2-500A
600	± 1200			CYHCS-KF2-600A
800	± 1600			CYHCS-KF2-800A
1000	± 2000	±4V±1.0%	85 x 27	CYHCS-KF2-1000A
1500	± 3000			CYHCS-KF2-1500A
2000	± 3000			CYHCS-KF2-2000A
3000	± 4000			CYHCS-KF2-3000A

Supply Voltage V_{cc} = ±12V~ ±15VDC Current Consumption I_c < 25mA Galvanic isolation, 50/60Hz, 1min: 5kV rms Isolation resistance @ 500 VDC > 500 M Ω

Accuracy and Dynamic performance data


Accuracy at I_r , T_A =25°C (without offset), X <±1.0% Linearity from 0 to I_r , T_A =25°C, $E_L < \pm 0.5\%$ FS Electric Offset Voltage, T_A =25°C, ±25mV Magnetic Offset Voltage, ±25mV Thermal Drift of Offset Voltage, V_{ot} <±1.0mV/°C Thermal drift (-10°C~+50°C) T.C. < ±0.1% /°C Frequency bandwidth (- 3 dB): DC-10kHz Response Time at 90% of IP $t_r \leq 7 \text{us}$ Load resistance: $10k\Omega$ Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

Dimensions (for reference only)

Pin Arrangement

1: +15V 2: GND (0V) 3: -15V 4: NC 5: Vout

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer.