

Closed Loop Hall Effect Current Sensor CYHCS-LAS

This Hall Effect current sensor is based on closed loop compensating principle and can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies (UPS) Switched Mode Power Supplies 		

ELECTRICAL DATA

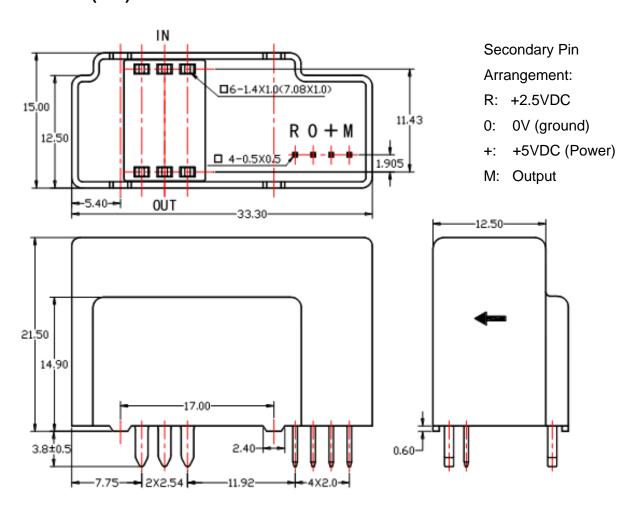
.

Part number	CYHCS-LAS50A	CYHCS-LAS100A	
Nominal input current (I _{PN})	50A	100A	
Measuring range (I _P)	0~ ±160A	0~±300A	
Secondary coil resistance	Ta=70°C, 28Ω	Ta=70°C, 15Ω	
Internal sampling resistor	3.75Ω±0.1% 10ppm/°C	1.875Ω±0.1% 10PPM/°C	
Turns ratio 1:N	1:1200	1:1200	
Nominal output voltage	2.5VDC±0.625±0.5%	2.5VDC±0.625±0.5%	
Supply voltage	+5VDC ± 5%		
Current consumption	≤20mA + Ip/N		
Reference voltage VR	+2.5VDC±0.4%		
Galvanic isolation	50Hz, 1min, 5kV		

ACCURACY DYNAMIC PERFORMANCE

Zero offset voltage Ta=25°C, I _P →0	+2.5VDC±0.4%		
Thermal drift of offset voltage	IP=0, Ta=-40°C ~ +85°C, ±0.5mV/°C		
Response time	(@100A/µs, 10% -90%) <0.5µs		
Accuracy at +25°C	± 0.5% FS		
Linearity	≤0.1% FS		
Bandwidth(-3dB)	DC100kHz		
di/dt	>100A/µs		

GENERAL DATA

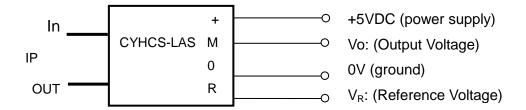

Operating temperature	-40°C ~ +85°C
Storage temperature	-40°C ~ +125°C
Unit weight (net)	15g

Email: info@cy-sensors.com http://www.cy-sensors.com

STANDARDS

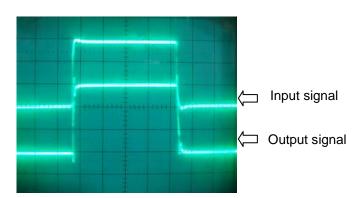
- UL94-V0.
- EN60947-1:2004
- IEC60950-1:2001 Test Voltage: 1000V
 EN50178:1998 Test Voltage: 1000V
- SJ 20790-2000

DIMENSIONS (mm)



Remarks:

- 1. All dimensions are in mm.
- 2. General tolerance ±1mm


SENOSOR CONNECTION

Pin connections

	Rated input	Measure	Rated output	Secondary	Primary	Primary
Turns	current	range	voltage		resistance	inductance
	(A)	(A)	(V)	turns	$(m\Omega)$	(uH)
1	50(100)	160(300)	0.625	1200	0.08	0.007

Pulse current signal response characteristic

Effects of impulse noise

OPERATION INSTRUCTIONS

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are the best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Email: info@cy-sensors.com http://www.cy-sensors.com