

Closed Loop Hall AC/DC Current Sensor CYHCS-LSP

This Hall Effect current sensor is based on closed loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies (UPS) Switched Mode Power Supplies 		

ELECTRICAL CHARACTERISTIC

Part number	CYHCS-LSP20A	CYHCS-LSP25A			
Nominal current	20A	25A			
Measuring range	0 ~ ±20A	0 ~ ±25A			
Internal measuring resistance	100Ω±0.5%	100Ω±0.5%			
Turns ratio	1:1000	1:1250			
Nominal analogue output voltage	+2.5VDC ± (2V ± 0.5%)				
Supply voltage	+5VDC ±5%				
Galvanic isolation	50Hz,1min, 3kV				
Impulse withstand voltage	1.2/50µs, >8kV				
Creepage distance	>15.4mm				
Load capacity	≤ 10nF @ Vout and GND				

ACCURACY DYNAMIC PERFORMANCE

Zero offset voltage Ta=25°C	2.5 ±0.6%	V
Thermal drift of offset voltage Ip=0, Ta-25°C ~ +85°C	≤ ±0.5	mV/°C
Measuring accuracy, Ta=25°C	≤±0.7	% FS
Linearity	≤±0.1	%FS
Following accuracy di/dt	50	A/µs
Response time	<1.0	μS
Bandwidth (-1db)	DC ~ 200	kHz
Load resistance	≥10	kΩ

GENERAL CHARACTERISTIC

Operating temperature	-25 ~ +85	С°
Storage temperature	-40 ~ +100	°C
Current consumption Ip=0	10	mA
Unit weight	10	g

Relation between Input Current and Output Voltage

Take the sensor CYHCS-LSP-20A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Input current (A)	-20	-15	-10	-5	0	5	10	15	20
Output voltage (V)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5

Fig. 1 Relation between the input current (DC) and output voltage (DC)

Fig. 2 Relation between the input current (AC) and output voltage (AC)

Version 2 Released in May 2016 Dr.-Ing. habil. Jigou Liu

Dimensions (mm)

Fig. 3 Dimensions of CYHCS-LSP

Connection

Pin arrangement

+:

O:

+5VDC

GND

OUT: Output

Fig. 4 Connection of CYHCS-LSP

Sizes and tolerances:

- Geometric tolerance: ±0.2mm
- Sizes of 3 pins: 0.25x0.5mm
- Size of mounting pins: 0.8x0.9mm
- Hole diameter: Φ8.5mm

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.