

Catalogue Open Loop Hall Effect AC/DC Current Sensors/ Transducers with Rectangle Windows

Copyright© 2020, ChenYang Technologies GmbH & Co. KG

All rights reserved. No part of this catalogue may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright holder.

Contact Address:

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel: +49 (0) 8121-25 74 100 Fax: +49 (0) 8121-2574 101 Email: info@chenyang.de Internet: www.chenyang.de

Tel:

Fax:

+49 (0) 8121-25 74 100

+49 (0) 8121-25 74 101

Contents

Hall Effect AC/DC Current Sensor CYHCS-K3/BR	
Hall Effect AC/DC Current Sensor CYHCS-BS5	4
Hall Effect AC/DC Current Sensor CYHCS-BSR565	7
Hall Effect AC/DC Current Sensor CYHCS-BT	9
Hall Effect AC/DC Current Sensor CYHCS-N	11
Hall Effect AC/DC Current Sensor CYHCS-BF	13
Hall Effect AC/DC Current Sensor CYHCS-CF	15
Hall Effect AC/DC Current Sensor CYHCS-F	17
Hall Effect AC/DC Current Sensor CYHCS-FA	
Hall Effect AC/DC Current Sensor CYHCS-K (Split Core)	21
Hall Effect AC/DC Current Sensor CYHCS-KF2 (Split Core)	23
Hall Effect AC/DC Current Sensors CYHCS-KAB (Split Core)	25
Hall Effect AC/DC Current Sensor CYHCS-K104 (Split Core)	27
Hall Effect AC/DC Current Sensor CYHCS-KCA (Split Core)	29
Hall Effect AC/DC Current Sensor CYHCS-HB	31
Hall Effect AC/DC Current Sensor CVHCS-K210	33

Tel:

Fax:

+49 (0) 8121-25 74 100 +49 (0) 8121-25 74 101

Email: info@chenyang.de

Internet: www.chenyang.de

Hall Effect AC/DC Current Sensor CYHCS-K3/BR

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

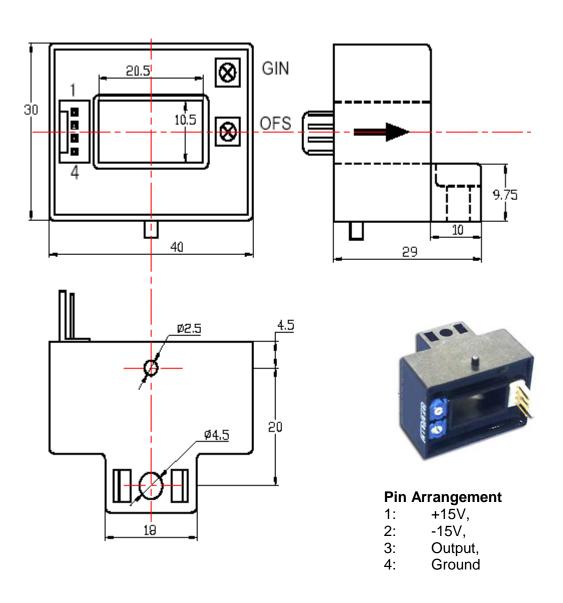
Primary Nominal	Measuring	Output voltage	Window Size	Part number
Current I_r (A)	Range (A)	(Analog) (V)	(mm)	
50	± 150			CYHCS-K3/BR-050A
100	± 300			CYHCS-K3/BR-100A
200	± 600			CYHCS-K3/BR-200A
300	± 900	4 +1.0%	20.5x10.5	CYHCS-K3/BR-300A
400	±1000			CYHCS-K3/BR-400A
500	±1000			CYHCS-K3/BR-500A
600	±1000			CYHCS-K3/BR-600A

Supply Voltage $V_{cc} = \pm 15 \text{V} \pm 5\%$, **Current Consumption** $I_c < 25 \text{mA}$ 2.5kV Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC $> 500 M\Omega$

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C (without offset),	<i>X</i> <1.0%
Linearity from 0 to I_r , $T_A=25$ °C,	<i>E_L</i> <1.0% FS
Electric Offset Voltage, T_A =25°C,	V_{oe} <±25mV
Magnetic Offset Voltage $(I_r \rightarrow 0)$	V_{om} <±25mV
Thermal Drift of Offset Voltage,	V_{ot} <±0.5mV/°C
Thermal Drift (-10°C to 50°C),	T.C. < ±0.1% /°C
Frequency bandwidth (- 3 dB):	DC-50kHz
Response Time at 90% of I_P (f =1k Hz)	t_r < 3 μ s
di/dt following accuracy:	70A/μs

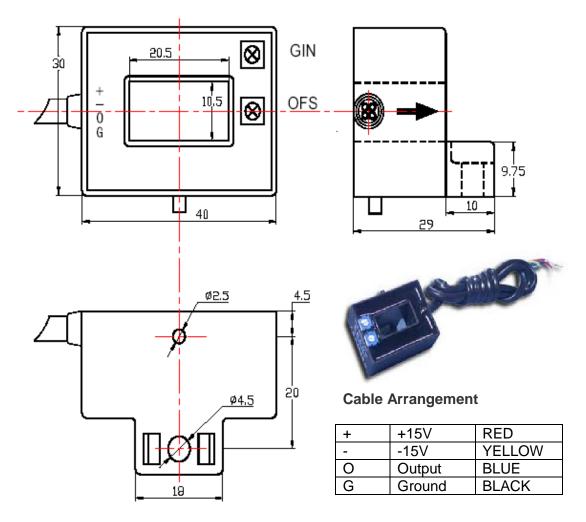
Tel:



Ambient Operating Temperature, Ambient Storage Temperature,

$$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$$

 $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$


PIN Definition and Dimensions

With Molex Connector (part number CYHCS-K3-xxxx)

With cable connection (part number CYHCS-BR-xxxx)

Cable type: RVV 4*9/0.15, diameter $\Phi4.1$ mm. It consists of 4 leads. Each lead has 9 wires with diameter 0.15mm

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-BS5

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

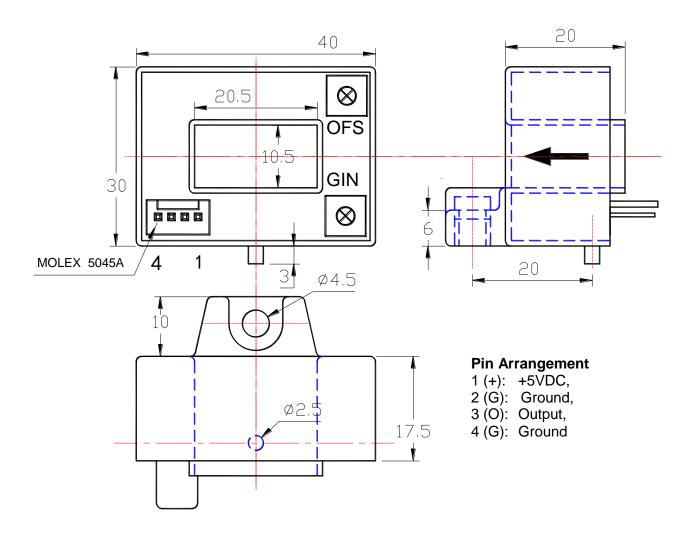
Electrical Data

Primary Nominal	Measuring	Output voltage	Window	Part number
Current I_r (A)	Range (A)	(analog)	sizes (mm)	
50	± 100			CYHCS-BS5-050A
100	± 200			CYHCS-BS5-100A
200	± 400	+2.5VDC		CYHCS-BS5-200A
300	± 600	±1V +1.0%	20.5x10.5	CYHCS-BS5-300A
400	±800	±1V +1.0%		CYHCS-BS5-400A
500	±900			CYHCS-BS5-500A
600	±900			CYHCS-BS5-600A

Supply Voltage V_{cc} = +5V \pm 5%, Current Consumption I_c < 25mA Galvanic isolation, 50/60Hz, 1min: 2.5kV Isolation resistance @ 500 VDC > 500 M Ω

Accuracy and Dynamic performance data

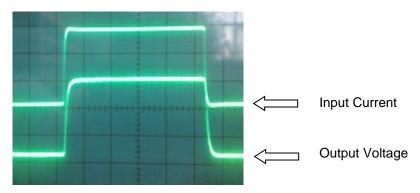
Accuracy at I_r , T_A =25°C (without offset), X < 1.0%Linearity from 0 to I_r , T_A =25°C, $E_L < 1.0\%$ FS Electric Offset Voltage, T_A =25°C, V_{oe} =+2.5VDC±0.5% Magnetic Offset Voltage ($I_r \rightarrow 0$) $V_{om} < \pm 15$ mV Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0$ mV/°C Frequency bandwidth (- 3 dB): DC-50kHz Response Time at 90% of I_P (f=1k Hz) $t_r < 3$ µs


General Data

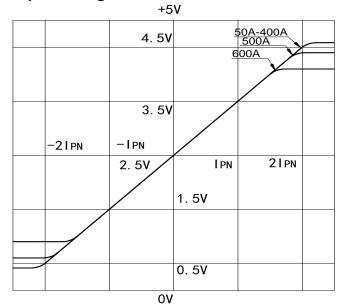
Ambient Operating Temperature, $T_A = -40^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +125^{\circ}\text{C}$

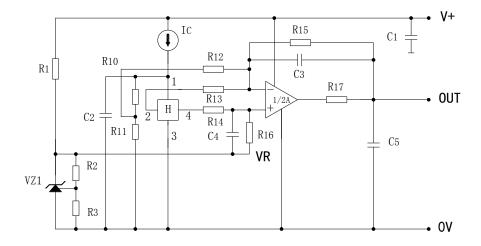
Tel:

PIN Definition and Dimensions


Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer


Fax: +49 (0) 8121-25 74 1 Email: info@chenyang.de Internet: www.chenyang.de


Response Characteristic of Pulse Current

Input Current and Output Voltage characteristic

Sensor Circuit

Hall Effect AC/DC Current Sensor CYHCS-BSR565

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

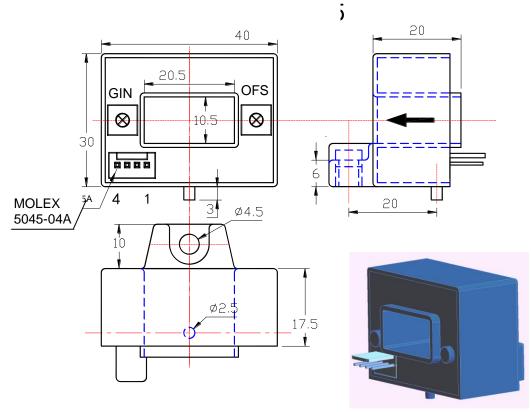
Primary Nominal Current I _r (A)	Measuring Range (A)	Output voltage (analog)	Window Sizes (mm)	Part number
50	± 150	`	,	CYHCS-BSR565-050A
100	± 300			CYHCS-BSR565-100A
200	± 600	+2.5VDC		CYHCS-BSR565-200A
300	± 900	±0.625V +1.0%	20.5x10.5	CYHCS-BSR565-300A
400	±1000	±0.023V +1.0%		CYHCS-BSR565-400A
500	±1000			CYHCS-BSR565-500A
600	±1000			CYHCS-BSR565-600A

Supply Voltage V_{cc} +5V ± 5%, Current Consumption I_c < 25mA Galvanic isolation, 50/60Hz, 1min: 2.5kV Isolation resistance @ 500 VDC > 500 M Ω

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C (without offset),	<1.0% FS
Linearity from 0 to I_r , $T_A=25$ °C,	<1.0% FS
Zero Output Voltage, T_A =25°C,	+2.5VDC±0.5%FS
Reference output voltage:	VR=+2.5VDC±0.5%FS
Electric Offset Voltage	<±10mV
Magnetic Offset Voltage $(I_r \rightarrow 0)$	<±10mV
Thermal Drift of Offset Voltage,	<±0.2mV/°C
Thermal Drift of Rated Output Voltage	<±0.4mV/°C
Frequency bandwidth (- 3 dB):	DC-50kHz
Response Time at 90% of I_P (f =1k Hz)	< 3µs

Tel:


Fax:

Ambient Operating Temperature, Ambient Storage Temperature,

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

Pin Arrangement:

1: +5VDC; 2: Ground; 3: Output; 4: VR (+2.5V)

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

A Hall Effect C/DC Current Sensor CYHCS-BT

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

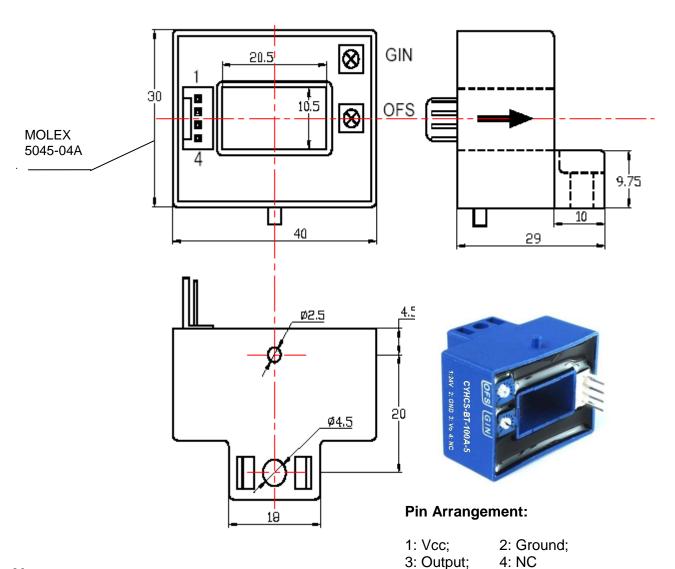
Primary Nominal	Measuring	Output voltage	Aperture	Part number
Current I_r (A)	Range (A)	(analog)	Sizes (mm)	
50	± 100			CYHCS-BT-050A-X
100	± 200			CYHCS-BT-100A-X
200	± 400	, E\/DC		CYHCS-BT-200A-X
300	± 600	+5VDC ±2V +1.0%	20.5x10.5	CYHCS-BT-300A-X
400	±800	±2V +1.0%		CYHCS-BT-400A-X
500	±900			CYHCS-BT-500A-X
600	±900			CYHCS-BT-600A-X

Supply Voltage: X=3, Vcc= +12VDC 5%, ; X=4, Vcc =+15VDC 5%; X=5, Vcc =+24VDC 5%,

 $\begin{array}{ll} \text{Current Consumption} & I_c < 25 \text{mA} \\ \text{Galvanic isolation, 50/60Hz, 1min:} & 2.5 \text{kV} \\ \text{Isolation resistance @ 500 VDC} & > 500 \text{ M}\Omega \end{array}$

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C (without offset), <1.0% FS Linearity from 0 to I_r , T_A =25°C, <0.5% FS Zero Output Voltage, T_A =25°C, +5VDC±0.5%FS Hysteresis offset voltage: <±25mV Thermal Drift of Offset Voltage, <±1.0mV/°C Frequency bandwidth (- 3 dB): DC-20kHz Response Time at 90% of I_P (f=1k Hz) <7 μ s


Tel:

Ambient Operating Temperature, Ambient Storage Temperature,

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -55^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-N

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

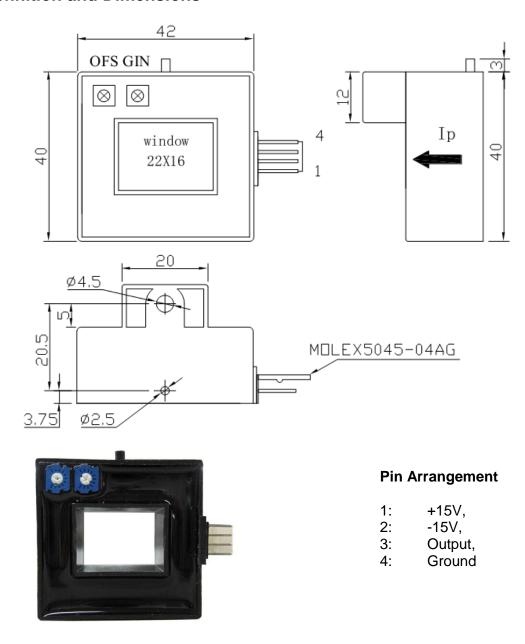
Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal	Measuring	Output voltage	Window	Part number
Current $I_r(A)$	Range (A)	(analog) (V)	sizes (mm)	
100	± 300			CYHCS-N-100A
200	± 600			CYHCS-N-200A
300	± 900	4 +1.0%	22 x16	CYHCS-N-300A
400	±1000	4 11.070	22 810	CYHCS-N-400A
500	±1000			CYHCS-N-500A
600	±1000			CYHCS-N-600A

 $\begin{array}{lll} \text{Supply Voltage} & V_{cc} = \pm 15 \text{V} \pm 5\%, \\ \text{Current Consumption} & I_c < 25 \text{mA} \\ \text{Galvanic isolation, 50/60Hz, 1min:} & 2.5 \text{kV} \\ \text{Isolation resistance } @ 500 \text{ VDC} & > 500 \text{ M}\Omega \\ \end{array}$

Accuracy and Dynamic performance data


Accuracy at I_r , T_A =25°C (without offset), X < 1.0%Linearity from 0 to I_r , T_A =25°C, $E_L < 1.0\%$ FS Electric Offset Voltage, T_A =25°C, $V_{oe} < \pm 25$ mV Magnetic Offset Voltage ($I_r \rightarrow 0$) $V_{om} < \pm 25$ mV Thermal Drift of Offset Voltage, $V_{ot} < \pm 0.5$ mV/°C Frequency bandwidth (- 3 dB): DC-50kHz Response Time at 90% of I_P (f=1k Hz) $t_r < 3$ µs

General Data

Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-BF

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring

Electrical Data

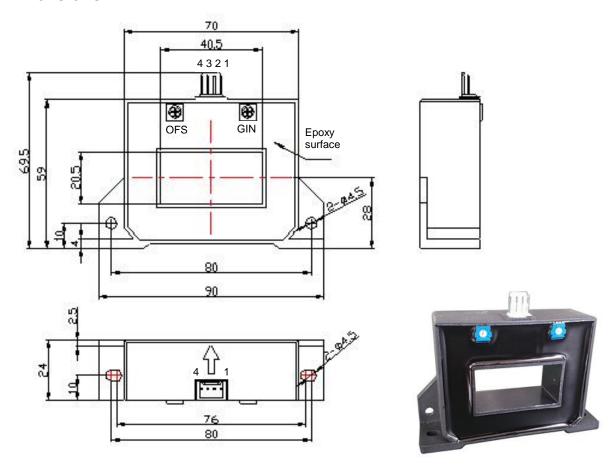
Primary Nominal	Measuring	Output voltage	Window Size	Part number
Current $I_r(A)$	Range (A)	(Analog) (V)	(mm)	
100	±200			CYHCS-BF100A
200	±400			CYHCS-BF200A
400	±800			CYHCS-BF400A
500	±1000	±4 +1.0%	40.5x20.5	CYHCS-BF500A
600	±1200			CYHCS-BF600A
800	±1600			CYHCS-BF800A
1000	±2000			CYHCS-BF1000A

Supply Voltage $V_{cc} = \pm 12 \sim \pm 15 \text{V} \pm 5\%$

Current Consumption I_c < 25mA</th>Galvanic isolation, 50/60Hz, 1min:2.5kV rmsLoad resistance:≥10kΩIsolation resistance @ 500 VDC> 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_{r} , T_{A} =25°C (without offset), X <±1.0% FS Linearity from 0 to I_r , $T_A=25$ °C, $E_{l} < \pm 0.5\% FS$ Electric Offset Voltage, $T_A=25^{\circ}$ C, V_{oe} <±25mV Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 25 \text{mV}$ Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/}^{\circ}\text{C}$ T.C. $< \pm 0.1\%$ /°C Thermal Drift (-10°C to 50°C), Frequency bandwidth (- 3 dB): DC-20kHz Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$


Tel:

Fax:

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight: Standard used: T_A = -25°C ~ +85°C T_S = -40°C ~ +100°C 230g/unit Q/320115QHKJ01-2013

Dimensions

Pin Arrangement

1: +Vcc; 2: -Vcc; 3: Output; 4: Ground OFS: Offset adjustment GIN: Gain adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-CF

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Electric power network monitoring

Electrical Data

Primary Nominal	Measuring	Output voltage	Window Size	Part number
Current $I_r(A)$	Range (A)	(Analog) (V)	(mm)	
200	±400			CYHCS-CF200A
400	±800			CYHCS-CF400A
500	±1000			CYHCS-CF500A
600	±1200	±4 +1.0%	42 x 37	CYHCS-CF600A
800	±1600			CYHCS-CF800A
1000	±2000			CYHCS-CF1000A
1500	±2500			CYHCS-CF1500A

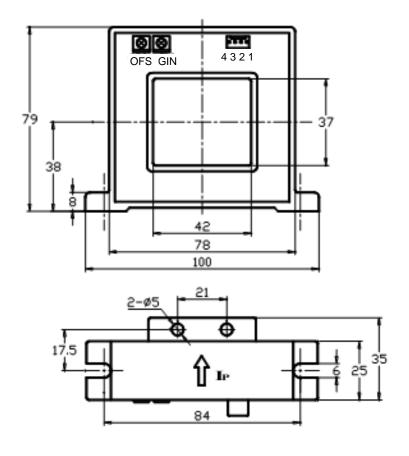
Supply Voltage V_{cc} = ±12~±15V ± 5%

Current Consumption $I_c < 25 \text{mA}$ Galvanic isolation, 50/60Hz, 1min: 5kV rms Load resistance: 10kΩ Isolation resistance @ 500 VDC $> 500 M\Omega$

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C (without offset), X <±1.0% FS Linearity from 0 to I_r , $T_A=25$ °C, E_{l} <±0.5% FS Electric Offset Voltage, T_A =25°C, $V_{oe} < \pm 25 \text{mV}$ Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 25 \text{mV}$ Thermal Drift of Offset Voltage, V_{ot} <±1.0mV/°C Thermal Drift (-10°C to 50°C), T.C. < ±0.1% /°C Frequency bandwidth (- 3 dB): DC-20kHz Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$

Tel:


Fax:

Internet: www.chenyang.de

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight: Standard used: T_A = -25°C ~ +85°C T_S = -40°C ~ +100°C 350g/unit Q/320115QHKJ01-2013

Dimensions

Pin Arrangement

1: +Vcc

2: -Vcc 3: Output

4: Ground

OFS: Offset adjustment GIN: Gain adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Tel:

Fax: +49 (0) 8121-25 74 1 Email: info@chenyang.de Internet: www.chenyang.de

Hall Effect AC/DC Current Sensor CYHCS-F

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal	Measuring	Output voltage	Window size	Part number
Current $I_r(A)$	Range (A)	(Analog)(V)	(mm)	
200	±400			CYHCS-F200A
400	±800			CYHCS-F400A
500	±1000			CYHCS-F500A
600	±1200	±4 +1.0%	41x14	CYHCS-F600A
800	±1600			CYHCS-F800A
1000	±2000			CYHCS-F1000A
2000	±3000			CYHCS-F2000A

Supply Voltage V_{cc} = ±12~±15V ± 5% **Current Consumption** $I_c < 25 \text{mA}$ Galvanic isolation, 50/60Hz, 1min: 3kV rms Load resistance: $10k\Omega$

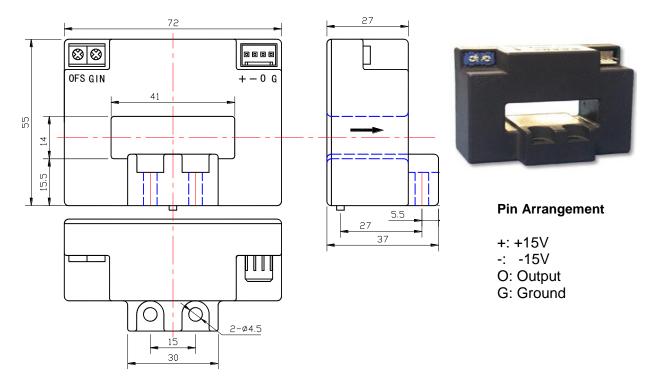
Isolation resistance @ 500 VDC $> 500 M\Omega$

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25$ °C (without offset), X <±1.0% Linearity from 0 to I_r , $T_A=25$ °C, $E_L < \pm 0.5\% FS$ Electric Offset Voltage, $T_A=25$ °C, V_{oe} <±25mV Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 25 \text{mV}$ Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/}^{\circ}\text{C}$ Thermal Drift (-10°C to 50°C), T.C. < ±0.1% /°C Frequency bandwidth (- 3 dB): DC-20kHz Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$

Tel:

Fax:


+49 (0) 8121-25 74 100

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight:

$$T_A$$
 = -25°C ~ +85°C
 T_S =-40°C ~ +100°C
217g/unit

Dimensions

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of primary current is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-FA

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity Small size Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring 		

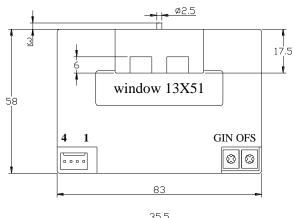
Electrical Data

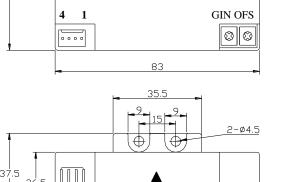
Primary Nominal Current I _r (A)	Measuring Range (A)	Output voltage (Ananlog) (V)	Window Size (mm)	Part number
400	±800			CYHCS-FA400A
500	±1000			CYHCS-FA500A
600	±1200			CYHCS-FA600A
800	±1600	±4 +1.0%	51x13	CYHCS-FA800A
1000	±2000			CYHCS-FA1000A
1500	±2500			CYHCS-FA1500A
2000	±2500			CYHCS-FA2000A

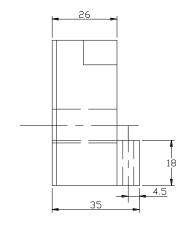
Supply Voltage $V_{cc} = \pm 12 \sim \pm 15 \text{V} \pm 5\%$

 $\begin{array}{ll} \text{Current Consumption} & I_c < 25 \text{mA} \\ \text{Galvanic isolation, 50/60Hz, 1min:} & 3 \text{kV rms} \\ \text{Load resistance:} & 10 \text{k}\Omega \\ \text{Isolation resistance @ 500 VDC} & > 500 \text{M}\Omega \\ \end{array}$

Accuracy and Dynamic performance data


Accuracy at I_r , $T_A=25$ °C (without offset), X <±1.0% Linearity from 0 to I_r , $T_A=25$ °C, $E_L < \pm 0.5\% FS$ Electric Offset Voltage, $T_A=25$ °C, V_{oe} <±25mV Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 25 \text{mV}$ Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/}^{\circ}\text{C}$ Thermal Drift (-10°C to 50°C), T.C. < ±0.1% /°C Frequency bandwidth (- 3 dB): DC-20kHz Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$




Ambient Operating Temperature, Ambient Storage Temperature, Unit weight:

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ 300g/unit

Dimensions

Pin Arrangement

1: +15V 2: -15V 3: Output

4: Ground

GIN: gain adjustment OFS: offset adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect AC/DC Current Sensor CYHCS-K

This Spilt Core Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal Current I _r (A)	Measuring Range (A)	Output voltage (Analog) Vo	Window Size (mm)	Part number
300	± 600			CYHCS-K300A
500	± 1000			CYHCS-K500A
600	± 1200			CYHCS-K600A
800	± 1600	4V±1.0%	64 x 16	CYHCS-K800A
1000	± 2000			CYHCS-K1000A
1500	± 3000			CYHCS-K1500A
2000	± 3000			CYHCS-K2000A

Supply Voltage V_{cc} = ±12~15VDC ± 5%

Current Consumption I_c < 25mA Galvanic isolation, 50/60Hz, 1min: 3kV rms Isolation resistance @ 500 VDC > 500 M Ω

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C (without offset), $X < \pm 1.0\%$ Linearity from 0 to I_r , T_A =25°C, $E_L < \pm 0.5\%$ FS Electric Offset Voltage, T_A =25°C, ± 25 mV Magnetic Offset Voltage, T_A =25°C, ± 30 mV

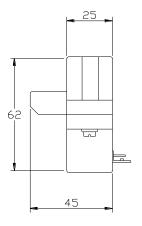
Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/°C}$ Frequency bandwidth (- 3 dB): DC-20kHz
Response Time at 90% of I_P (f=1 k Hz)
Load resistance: $t_r \le 7 \mu \text{s}$

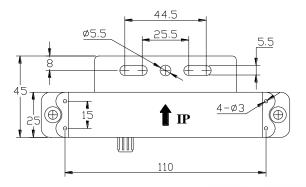
Tel:

Fax:

Email: info@chenyang.de

Internet: www.chenyang.de




Ambient Operating Temperature, Ambient Storage Temperature,

$$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$$

 $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Dimensions

Pin Arrangement

1: +15V 2: -15V 3: Output 4: GND

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer.

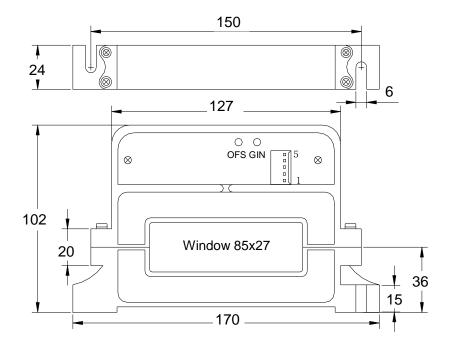
Split Core Hall Effect AC/DC Current Sensor CYHCS-KF2

This Spilt Core Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity With Split Core, easy installation Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive 		
transducer from the current carrying	Numerical controlled machine tools		

Electrical Data

Primary Nominal	Measuring Range	Output voltage	Window size	Part number
Current $I_r(A)$	(A)	(Analog) Vo	(mm)	
500	± 1000			CYHCS-KF2-500A
600	± 1200			CYHCS-KF2-600A
800	± 1600			CYHCS-KF2-800A
1000	± 2000	±4V±1.0%	85 x 27	CYHCS-KF2-1000A
1500	± 3000			CYHCS-KF2-1500A
2000	± 3000			CYHCS-KF2-2000A
3000	± 4000			CYHCS-KF2-3000A


Supply Voltage V_{cc} = ±12V~ ±15VDC Current Consumption I_c < 25mA Galvanic isolation, 50/60Hz, 1min: 5kV rms Isolation resistance @ 500 VDC > 500 M Ω

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C (without offset), *X* <±1.0% Linearity from 0 to I_r , $T_A=25$ °C, $E_{l} < \pm 0.5\% FS$ ±25mV Electric Offset Voltage, T_A =25°C, ±25mV Magnetic Offset Voltage, Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/}^{\circ}\text{C}$ T.C. < ±0.1% /°C Thermal drift (-10°C~+50°C) DC-10kHz Frequency bandwidth (- 3 dB): Response Time at 90% of I_P $t_r \le 7 \mu s$ Load resistance: 10kΩ Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Dimensions (for reference only)

Pin Arrangement

1: +15V

2: GND (0V)

3: -15V

4: NC

5: Vout

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer.

Split Core Hall Effect AC/DC Current Sensor CYHCS-KAB

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	Photovoltaic equipment Frequency conversion timing equipment Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Electric power network monitoring	

Electrical Data

Primary Nominal	Measuring	Output voltage	Window Size	Part number
Current I_r (A)	Range (A)	(Analog) (V)	(mm)	
500	±1000			CYHCS-KAB500A
700	±1400			CYHCS-KAB700A
800	±1600			CYHCS-KAB800A
900	±1800	±4 +1.0%	102 x 38	CYHCS-KAB900A
1000	±2000	±4 +1.0 /0	102 X 30	CYHCS-KAB1000A
1500	±3000			CYHCS-KAB1500A
2000	±4000			CYHCS-KAB2000A
3000	±4000			CYHCS-KAB3000A

Supply Voltage $Vcc=\pm 12\sim\pm 15 V\pm 5\%$

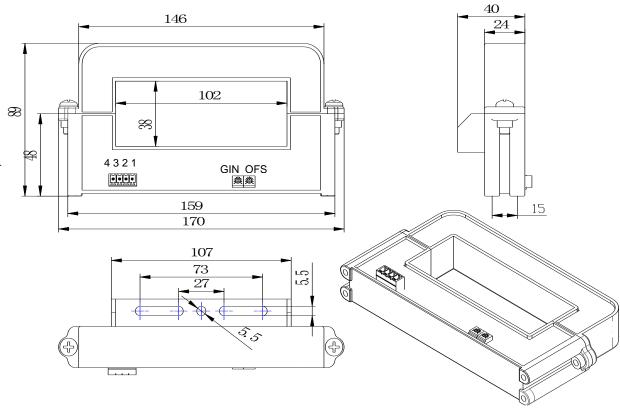
Current Consumption $I_c < 30 \text{mA}$

Galvanic isolation, 50/60Hz, 1min: 5kV rms Load resistance: ≥10kΩ Isolation resistance @ 500 VDC > 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C (without offset), $X < \pm 1.0\%$ FS Linearity from 0 to I_r , T_A =25°C, $E_L < \pm 0.5\%$ FS Electric Offset Voltage, T_A =25°C, $V_{oe} < \pm 30$ mV Magnetic Offset Voltage ($I_r \rightarrow 0$) $V_{om} < \pm 25$ mV Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0$ mV/°C Thermal Drift (-10°C to 50°C), $T.C. < \pm 0.1\%$ /°C Frequency bandwidth (-3 dR):

Frequency bandwidth (- 3 dB): DC-20kHz Response Time at 90% of I_P (f=1k Hz) t_r < 7μ s


Tel:

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight: Standard used:

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_{\rm S} = -40^{\circ}{\rm C} \sim +100^{\circ}{\rm C}$ 750g/unit Q/320115QHKJ01-2013

Dimensions

OFS: Offset adjustment GIN: Gain adjustment

Pin Arrangement

Phoenix Connector:

1: +Vcc; 2: -Vcc; 3: Output; 4: Ground

Cable connection:

Red: +Vcc; blue: -Vcc yellow: Vout; black: GND

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Internet: www.chenyang.de

- 26 -

Split Core Hall Effect AC/DC Current Sensor CYHCS-K104

This Spilt Core Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity With Split Core, easy installation Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive 	
No insertion lossCurrent overload capability	Microcomputer monitoringElectric power network monitoring	

Electrical Data

Primary Nominal RMS	Measuring	Output voltage	Window size	Part number
Current I_r (A)	Range (A)	(Analog) (V)	(mm)	
500	± 1000			CYHCS-K104-500A
1000	± 2000			CYHCS-K104-1000A
1500	± 3000	4V±1.0%	104 x 36	CYHCS-K104-1500A
2000	± 4000	4V±1.070	104 X 30	CYHCS-K104-2000A
3000	± 6000			CYHCS-K104-3000A
5000	±7500			CYHCS-K104-5000A

Supply Voltage V_{cc} = ±12V~ ±15VDC

Current Consumption $I_c < 25 \text{mA}$ Galvanic isolation, 50/60Hz, 1min: 6kV

Galvanic isolation, 50/60Hz, 1min: 6kVIsolation resistance @ 500 VDC $> 500 M\Omega$

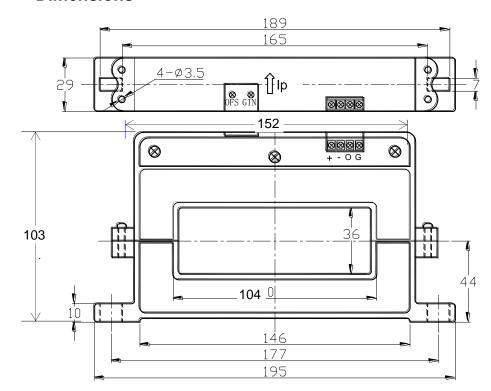
Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C (without offset), X < 1.0%Linearity from 0 to I_r , T_A =25°C, $E_L < 1.0\%$ FS Electric Offset Voltage, T_A =25°C, 25mVMagnetic Offset Voltage, 30mVThermal Drift of Offset Voltage, $V_{ot} < \pm 1.0\text{mV}/5$

Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/°C}$ Frequency bandwidth (- 3 dB): DC-20kHz Response Time at 90% of I_P $t_r \le 7 \mu \text{s}$ Load resistance: 10kΩ

General Data

Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$


Email: info@chenyang.de Internet: www.chenyang.de

Tel:

Fax:

Dimensions

Pin Arrangement

1(+): +15V 2(-): -15V 3(O): Output 4(G): GND

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer.

Fax: +49 (0) 8121-25 74 1 Email: info@chenyang.de Internet: www.chenyang.de

Split Core Hall Effect AC/DC Current Sensor CYHCS-KCA

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipments Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipments Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data/Input

Primary Nominal	Primary Current Measuring	Output Voltage	Part number
Current I_r (A)	Range $I_p(A)$	(analog) (V)	
1000A	0 ~ ± 2000A		CYHCS-KCA-1000A
2000A	0 ~ ± 4000A		CYHCS-KCA-2000A
3000A	0 ~ ± 6000A		CYHCS-KCA-3000A
4000A	0 ~ ± 8000A	4 +1.0%	CYHCS-KCA-4000A
5000A	0 ~ ± 10000A	4 ±1.070	CYHCS-KCA-5000A
6000A	0 ~ ± 12000A		CYHCS-KCA-6000A
8000A	0 ~ ± 12000A		CYHCS-KCA-8000A
10000A	0 ~ ± 12000A		CYHCS-KCA-10000A

Supply Voltage: V_{cc} =±15VDC ± 5%

Current Consumption $I_c < 35 \text{mA}$

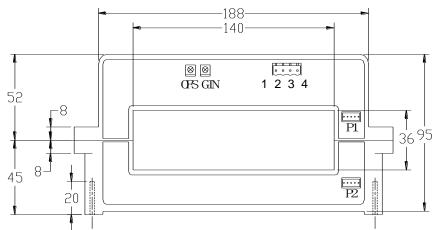
Isolation Voltage 6kV, 50/60Hz, 1min

Electrical Data/Output

Output Voltage at I_r , T_A =25°C: $V_{\rm out}$ =4VDC Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_L > 10 {\rm k} \Omega$

Accuracy

Accuracy at I_{c} , T_{A} =25°C (without offset), X < 1.0% E_L <1.0% FS Linearity from 0 to I_r , $T_A=25$ °C, Electric Offset Voltage, T_A =25°C, V_{oe} <±25mV Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 30 \text{mV}$ Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/}^{\circ}\text{C}$ Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 10 \mu s$ Frequency Bandwidth (-3dB), $f_b = DC-3 \text{ kHz}$

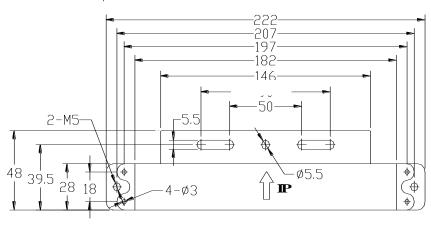

Ambient Operating Temperature, Ambient Storage Temperature,

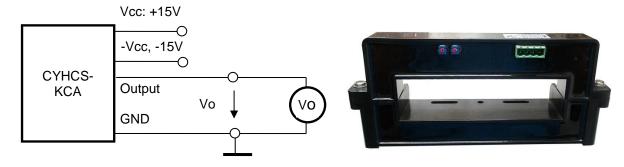
 T_A = -25°C ~ +85°C T_S = -40°C ~ +100°C

PIN Definition and Dimensions

OFS: Offset Adjustment

GIN: Gain Adjustment


Pin arrangement:


1(V+): Vcc

2(V-): -Vcc

3(OUT): OUTPUT

4(GND): 0V (GND)

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-HB

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC, AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
Excellent accuracy	Photovoltaic equipmentFrequency conversion timing equipment	
Very good linearity	Various power supply	
easy installation	Uninterruptible power supplies (UPS)	
Less power consumption	Electric welding machines	
Window structure	Transformer substation	
Electrically isolating the output of the transductor from the current corruing conductor.	Numerical controlled machine tools	
 transducer from the current carrying conductor No insertion loss 	Electric powered locomotive	
Current overload capability	Microcomputer monitoring	
Current overload capability	Electric power network monitoring	

Electrical Data

Primary Nominal RMS	Measuring	Output current	Aperture	Part number
Current I_r (A)	Range (A)	(Analog) Vo	Diameter (mm)	
2000	± 4000			CYHCS-HB2000A
3000	± 5000			CYHCS-HB3000A
4000	± 6000	4V±1.0%	140 x 50	CYHCS-HB4000A
5000	± 7500		140 X 30	CYHCS-HB5000A
8000	± 10000			CYHCS-HB8000A
10000	± 12000			CYHCS-HB10000A

Supply Voltage V_{cc} = ±12 or ±15VDC ± 5%

Current Consumption I_c < 25mA

Galvanic isolation, 50/60Hz, 1min: 6kV Isolation resistance @ 500 VDC $> 500 \ M\Omega$

Accuracy and Dynamic performance data

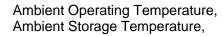
Accuracy at I_r , T_A =25°C (without offset), X < 1.0%Linearity from 0 to I_r , T_A =25°C, $E_L < 1.0\%$ FS Electric Offset Voltage, T_A =25°C, 25mV Magnetic Offset Voltage, T_A =25°C, 30mV

Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/°C}$ Frequency bandwidth (- 3 dB): DC-20kHz Response Time at 90% of I_P $t_r \le 7 \mu \text{s}$

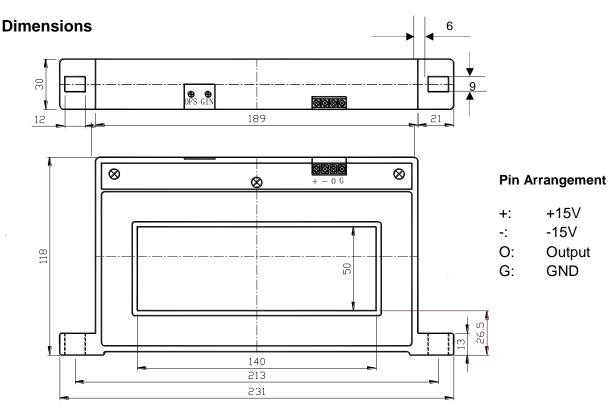
Tel:

Fax:

+49 (0) 8121-25 74 100


+49 (0) 8121-25 74 101

Email: info@chenyang.de


Internet: www.chenyang.de

Load resistance: $t_r \le r\mu s$

$$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$$

 $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer.

Hall Effect AC/DC Current Sensor CYHCS-K210

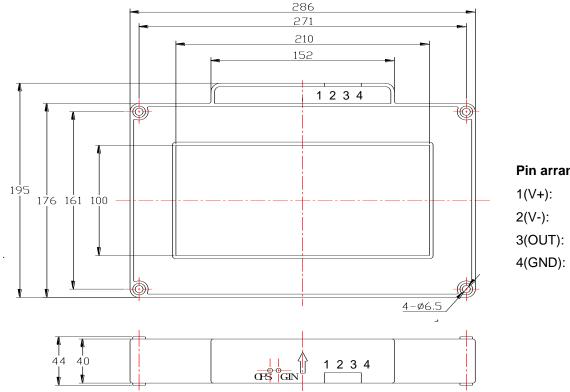
This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal Current I _r (A)	Primary Current Measuring Range $I_p(A)$	Output Voltage (Analog)(V)	Part number
3000A	0 ~ ± 3600A		CYHCS-K210-3000A
4000A	0 ~ ± 4800A		CYHCS-K210-4000A
5000A	0 ~ ± 6000A		CYHCS-K210-5000A
6000A	0 ~ ± 7200A	4 ±1.0%	CYHCS-K210-6000A
8000A	0 ~ ± 9600A	4 ±1.0 /0	CYHCS-K210-8000A
10000A	0 ~ ± 12000A		CYHCS-K210-10000A
15000A	0 ~ ± 18000A		CYHCS-K210-15000A
20000A	0 ~ ± 22000A		CYHCS-K210-20000A

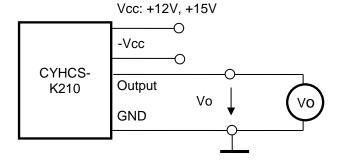
Supply Voltage: $V_{cc} = \pm 12 \text{V} \sim \pm 15 \text{VDC} \pm 5\%$ Current Consumption $I_c < 50 \text{mA}$ Isolation Voltage 6kV, 50/60Hz, 1min Output Voltage at I_r , $T_A=25$ °C: $V_{\text{out}} = 4 \text{VDC}$ Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_{\rm L} > 10 {\rm k}\Omega$ Accuracy at I_r , T_A =25°C (without offset), X < 1.0% Linearity from 0 to I_r , $T_A=25$ °C, E_L < 1.0% FS Linear Measuring range, 1.2 times of measuring range Overload capability, 3 times of measuring range V_{oe} <±30mV Electric Offset Voltage, T_A =25°C, Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 40 \text{mV}$ Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/}^{\circ}\text{C}$ Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 10 \text{us}$ Frequency Bandwidth (-3dB), $f_b = DC-3 \text{ kHz}$


General Data

Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Tel:

PIN Definition and Dimensions


Pin arrangement:

Vcc -Vcc 2(V-):

3(OUT): **OUTPUT** 0V (GND)

OFS: Offset Adjustment

GIN: Gain Adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer