

Catalogue

Open Loop Hall Effect AC/DC Current Sensors Transducers with Round Window

Copyright© 2020, ChenYang Technologies GmbH & Co. KG

All rights reserved. No part of this catalogue may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright holder.

Contact Address:

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel:	+49 (0) 8121-25 74 100
Fax:	+49 (0) 8121-2574 101
Email:	info@chenyang.de
Internet:	www.chenyang.de

Contents

Hall Effect AC/DC Current Sensor CYHCS-K200	1
Hall Effect AC/DC Current Sensor CYHCS-LTH (High Accurate)	4
Hall Effect AC/DC Current Sensor CYHCS-WF2	
Hall Effect AC/DC Current Sensor CYHCS-RC1S	9
Hall Effect AC/DC Current Sensor CYHCS-C1T	12
Hall Effect AC/DC Current Sensor CYHCS-RC4	14
Hall Effect AC/DC Current Sensor CYHCS-E	16
Hall Effect AC/DC Current Sensor CYHCS-C2S (Split Core, DIN Rail Converter)	18
Hall Effect AC/DC Current Sensor CYHCS-RC2S (Split Core, DIN Rail Converter)	23
Hall Effect AC/DC Current Sensor CYHCS-C2T (Split Core, DIN Rail Converter)	28
Hall Effect AC/DC Current Sensor CYHCS-RC2 (Split Core, DIN Rail Converter)	32
Hall Effect AC/DC Current Sensor CYHCS-EKAA (Split Core, DIN Rail Converter)	36
Hall Effect AC/DC Current Sensor CYHCS-EKB (Split Core)	40
Hall Effect AC/DC Current Sensor CYHCS-C3S (Split Core)	42
Hall Effect AC/DC Current Sensor CYHCS-C3T (Split Core)	45
Hall Effect AC/DC Current Sensor CYHCS-EA	47
Hall Effect AC/DC Current Sensor CYHCS-K2A	49
Hall Effect AC/DC Current Sensor CYHCS-K2B	51
Hall Effect AC/DC Current Sensor CYHCS-K2	53
Hall Effect AC/DC Current Sensor CYHCS-K2C	55

Hall Effect AC/DC Current Sensor CYHCS-K200

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size and encapsulated Less power consumption Current overload capability 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies (UPS) Switched Mode Power Supplies

ELECTRICAL CHARACTERISTIC

Part number	CYHCS-K200-10A	CYHCS-K200-20A	CYHCS-K200-30A	CYHCS-K200-50A	
Nominal current	10A	20A	30A	50A	
Measuring range	0 ~ 20A	0 ~ 40A	0 ~ 60A	0 ~100A	
Nominal analogue output voltage	+2.5VDC ± (1V ± 1.0%)				
Supply voltage	+5V ±5%				
Galvanic isolation	50Hz,1min, 2.5kV				

ACCURACY DYNAMIC PERFORMANCE

Zero offset voltage at +25°C	2.5 ±0.5%	V
Magnetic offset voltage	25	mV
Thermal drift of offset voltage	≤ ±0.5	mV/°C
Measuring accuracy	≤1.0	% FS
Linearity	≤1.0	%FS
Response time	<3	μS
Bandwidth (-1db)	DC ~ 200	kHz
Load resistance	≥10	kΩ

GENERAL CHARACTERISTIC

Operating temperature	-25 ~ +85	°C
Storage temperature	-40 ~ +100	°C
Current consumption	20	mA

Relation between Input Current and Output Voltage

Take the sensor CYHCS-K200-30A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1. F	Relation between	the input curren	it and output voltage
------------	------------------	------------------	-----------------------

		iipat oaii	one and	a output	vonag				
Input current (A)	-60	-45	-30	-15	0	15	30	45	60
Output voltage (V)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5

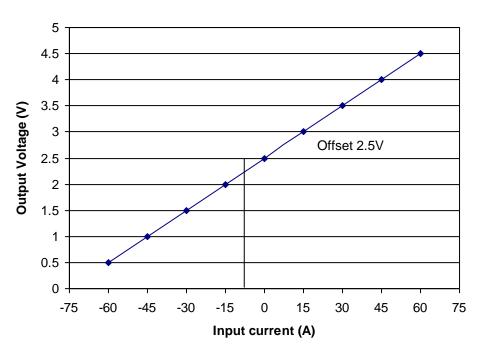
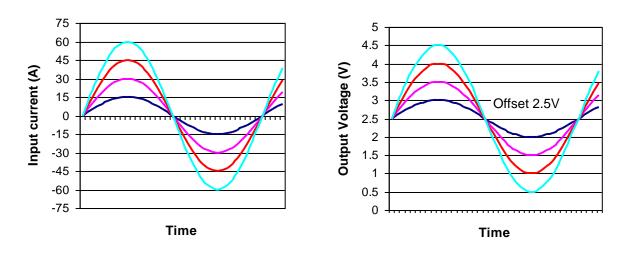
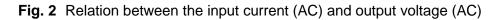




Fig. 1 Relation between the input current (DC) and output voltage (DC)

Dimensions (mm)

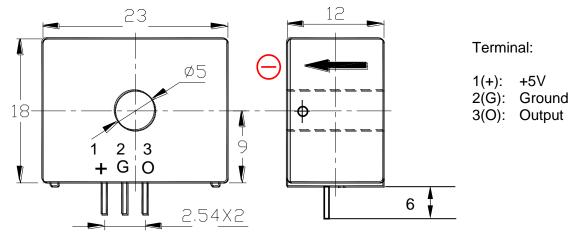


Fig. 3 Dimensions of CYHCS-K200

Connection

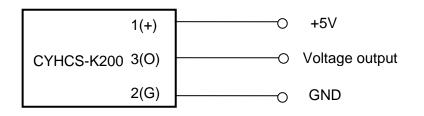
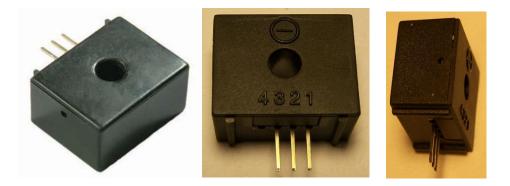



Fig. 4 Connection of CYHCS-K200

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. The in-phase output can be obtained when the current direction of current carrying conductor is the same as the direction of arrow marked above.
- 3. The best accuracy can be achieved when the window is fully filled with cable (current carrying conductor).

Markt Schwabener Str. 8 D-85464 Finsing Germany

High Accurate Hall Effect AC/DC Current Sensor CYHCS-LTH

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring 		

Electrical Data

Primary Nominal RMS Current <i>I</i> _r (A)	Measuring Range (A)	Output voltage (V)	Aperture Diameter (mm)	Part number
10	± 30			CYHCS-LTH10A
20	± 60			CYHCS-LTH20A
50	± 150	Γ	CYHCS-LTH50A	
75	± 225	4 ±0.2%	2% Ø20.2 - -	CYHCS-LTH75A
100	± 300	4 ±0.2 %		CYHCS-LTH100A
200	± 500			CYHCS-LTH200A
300	± 600			CYHCS-LTH300A
500	± 1000			CYHCS-LTH500A

Supply Voltage	V_{cc} = ±15V ± 5%,
Current Consumption	<i>l_c</i> < 25mA
Galvanic isolation, 50/60Hz, 1min:	5kV
Isolation resistance @ 500 VDC	> 500 MΩ

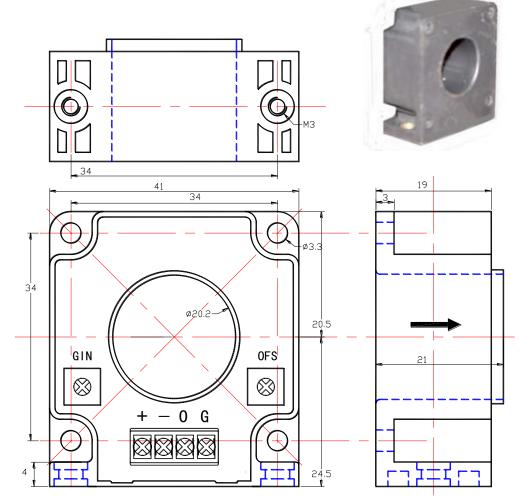
Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C (without offset), Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Response Time at 90% of I_P ($f=1$ k Hz)	X <0.5% E_L <0.2% FS V_{oe} <±15mV V_{om} <±15mV V_{ot} <±0.5mV/°C t_r < 3µs PC 20/r Hz
Frequency bandwidth (- 3 dB):	DC-20kHz

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

> Markt Schwabener Str. 8 D-85464 Finsing Germany


+49 (0) 8121-25 74 100

Tel:

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

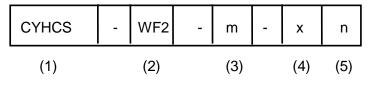
PIN Definition and Dimensions

Terminal Definition:

+: +15V -: -15V O: Output G: Ground

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-WF2

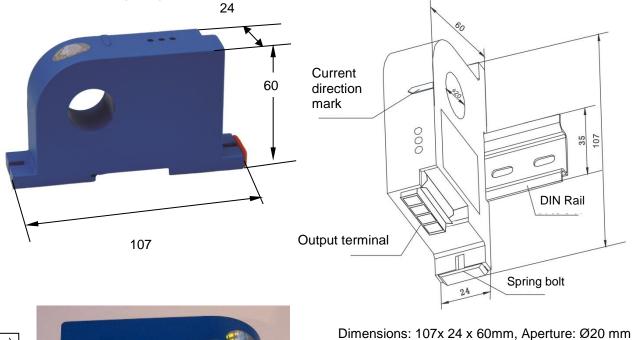

The sensor CYHCS-WF2 is Hall Effect current sensor for the measurement of AC/DC current. The sensor has a galvanic isolation between the primary conductor and the secondary electronic circuit.

Features and Advantages	Applications
 AC/DC current measurement Output signal option (±4VAC/DC, ±5VAC/DC) 	 Photovoltaic equipment Battery banks, such as, monitoring load current and charge current, verifying operation
 35mm DIN Rail High isolation between primary and 	 Transportation, measuring traction power or auxiliary loads
secondary circuitsNo insertion losses	Phase fired controlled heatersDirectly connect to PLC
Easy installation	Sense motor stalls and short circuits

Specifications

Rated input current (DC current calibration)	5A, 10A, 15A, 20A, 25A, 30A, 40A, 50A, 100A
Linear measuring range	1.2 times of rated input current
Output signals	±4VAC/DC, ±5VAC/DC,
Power supply	±12V DC, ±15V DC
Measuring accuracy	±1.0%
Linearity (10% - 100%), 25°C	≤ ±0.5%
Zero offset voltage	±25mV
Hysteresis error	±25mV
Thermal drift of offset voltage	≤300PPM/°C
Galvanic isolation	3 kV AC, 50Hz, 1min
Isolation resistance	≥20MΩ
Response time	≤15µs
Frequency range	DC/25Hz ~ 20kHz
Overload capacity	20 times of rated current, 1s, interval 300s, repeat 5times
Static Current	10mA
Output load	5mA
Mounting	35mm DIN Rail
Case style and Window size	WF2 with aperture Ø20mm
Operating temperature	-25°C ~ +70°C
Storage temperature	-45°C ~ + 85°C
Relative humidity	≤90%
Mean Time Between Failures (MTBF)	≥ 100k hours

Definition of Part number:



(1)	(2)	(3)	(4)	(5)
Series	Case	Rated Input current	Output signal	Power supply
name	style	(m)		
		m = 5A, 10A, 15A, 20A, 25A,	x=0: ±4V AC/DC	n =5: ±12V DC
CYHCS	WF2	30A, 40A, 50A, 100A	x=1: ±5V AC/DC	n =6: ±15V DC

Example 1: CYHCS-WF2-100A -15, Hall Effect AC/DC Current sensor with Output signal: ±5V AC/DC Power supply: ±12V DC Rated input current: 100A AC/DC

- Example 2: CYHCS-WF2-10A -05, Hall Effect AC/DC Current sensor with Output signal: ±4V AC/DC Power supply: ±12V DC Rated input current: 10A AC/DC
- Example 3: CYHCS-WF2-5A -16, Hall Effect AC/DC Current sensor with Output signal: ±5V AC/DC Power supply: ±15V DC Rated input current: 5A AC/DC

DIMENSIONS (mm)

CONNECTION

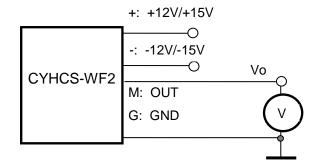
Markt Schwabener Str. 8 D-85464 Finsing Germany Pin Arrangement:

Ground

Output

Power supply V+

Power supply V-


1(+):

2(-):

3(G): 4(M):

1(+): +15V/+12V Power Supply 2(-): -15V/-12V Power Supply 3(G): Ground 4(M): Output

Relation between Input and Output:

Sensor CYHCS-WF2-100A-15		
Input current (A)	Output voltage (V)	
-100	-5	
-75	-3.75	
-50	-2.5	
-25	-1.25	
0	0	
25	1.25	
50	2.5	
75	3.75	
100	5	

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of the primary input current is the same as the direction of arrow marked on the transducer case.

Hall Effect AC/DC Current Sensor CYHCS-RC1S

This Hall Effect current sensor can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss 	 Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring
Current overload capability	Electric power network monitoring

Electrical Data

Primary Nominal Current <i>I</i> _r (A)	Primary Current Measuring Range I _p (A) at Vcc=12V	Output Voltage (analog) (V)	Part number
25	± 50		CYHCS-RC1S-025A-XC
50	± 100		CYHCS-RC1S-050A-XC
100	± 200		CYHCS-RC1S-100A-XC
200	± 400	5VDC±2V	CYHCS-RC1S-200A-XC
300	± 600		CYHCS-RC1S-300A-XC
400	± 800		CYHCS-RC1S-400A-XC
500	± 900		CYHCS-RC1S-400A-XC

(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage: X=3, V_{cc} = +12VDC± 5%, ; X=4, V_{cc} =+15VDC± 5%; Current Consumption RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min,	X=5, V _{cc} =+24VDC± 5%, I _c < 25mA V _{is} <10mA
Output Impedance:	$R_{\rm out}$ < 150 Ω
Load Resistance:	$R_{\rm L}$ > 10k Ω
Accuracy at I_r , $T_A=25^{\circ}$ C (without offset),	<i>X</i> <1.0%
Linearity from 0 to I_r , $T_A=25^{\circ}$ C,	<i>E_L</i> <1.0% FS
Electric Offset Voltage, $T_A=25^{\circ}$ C,	$V_{oe} = 5.0 \text{VDC} \pm 1.0\%$
Magnetic Offset Voltage $(I_r \rightarrow 0)$	<i>V_{om}</i> <±15mV
Thermal Drift of Offset Voltage,	$V_{ot} < \pm 1.0 \text{mV/°C}$
Thermal Drift (-10°C to 50°C),	T.C. < ±0.1% /°C
Response Time at 90% of I_P (f=1k Hz)	<i>t</i> _r < 5µs
Frequency Bandwidth (-3dB),	$f_b = 50 \text{ kHz}$

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

> Markt Schwabener Str. 8 D-85464 Finsing Germany

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Relation between Input Current and Output Voltage

Taking the sensor CYHCS-RC1S-100A-3 as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1. Relation between the input current and output voltage

Input current (A)	-200	-150	-100	-50	0	50	100	150	200
Output voltage (V)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0

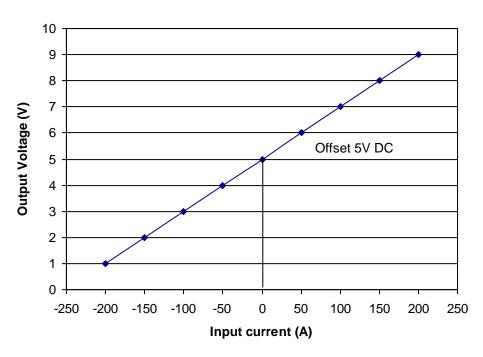
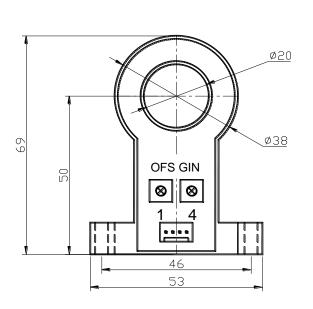
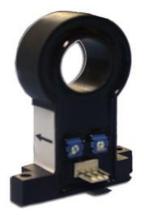
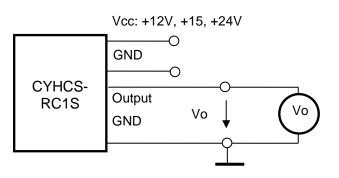


Fig. 1 Relation between the input current (DC) and output voltage (DC)


Fig. 2 Relation between the input current (AC) and output voltage (AC)


PIN Definition and Dimensions

1: Vcc 2: NC 3: Output 4: Ground

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-C1T

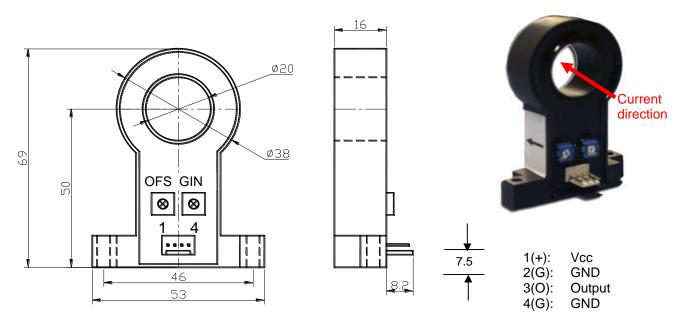
This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Frequency conversion timing equipment
Very good linearity	Various power supply
Light in weight	 Uninterruptible power supplies (UPS)
Less power consumption	Electric welding machines
Window structure with split core	Numerical controlled machine tools
Electrically isolating the output of the	Electrolyzing and electroplating equipment
transducer from the current carrying conductor	Electric powered locomotive
No insertion loss	Microcomputer monitoring
Current overload capability	Electric power network monitoring

Electrical Data

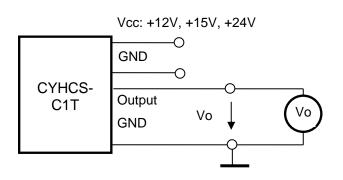
Primary Nominal Current <i>I</i> _r (A)	Primary Current Measuring Range I _p (A) at Vcc=12V	Output Voltage (analog) (V)	Part number
30	± 30		CYHCS-C1T-30A-xnC
50	± 50		CYHCS-C1T-50A-xnC
100	± 100	x=3: 2.5VDC±2.5V	CYHCS-C1T-100A-xnC
200	± 200	x=8: 5VDC ± 5V	CYHCS-C1T-200A-xnC
300	± 300		CYHCS-C1T-300A-xnC
400	± 400		CYHCS-C1T-400A-xnC
500	± 500		CYHCS-C1T-500A-xnC

(n=2, *Vcc*= +12VDC; n=3, *Vcc*=+15VDC; n=4, *Vcc*=+24VDC, Connector: Molex connector C=M; Phoenix Connector: C=P)


Current Consumption	$I_c < 25 \text{mA}$
RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min,	$V_{is} < 10 \text{mA}$
Output Impedance:	$R_{out} < 150 \Omega$
Load Resistor:	$R_L > 10 k \Omega$
Accuracy at I_r , T_A =25°C (without offset),	X < 1.0%
Linearity from 0 to I_r , T_A =25°C,	$E_L < 1.0\%$ FS
Electric Offset Voltage, T_A =25°C,	$V_{oe} = 2.5 \text{VDC} \pm 1.0\%$ or $5 \text{VDC} \pm 1.0\%$
Magnetic Offset Voltage ($I_r \rightarrow 0$)	$V_{om} < \pm 15 \text{mV}$
Thermal Drift of Offset Voltage,	$V_{ot} < \pm 1.0 \text{mV/°C}$
Thermal Drift (-10°C to 50°C),	T.C. $< \pm 0.1\%$ /°C
Response Time at 90% of I_P (f=1k Hz)	$t_r < 7 \mu \text{s}$
Frequency Bandwidth (-3dB),	$f_b = 0.20 \text{ kHz}$
Mean Time Between Failures (MTBE):	50 k = 100 k hours
Mean Time Between Failures (MTBF):	50k - 100k hours

General Data

Ambient Operating Temperature,	<i>T_A</i> = -25°C ~ +85°C
Ambient Storage Temperature,	$T_{\rm S}$ =-40°C ~ +100°C


PIN Definition and Dimensions

OFS: Offset Adjustment

GIN: Gain Adjustment

Connection

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

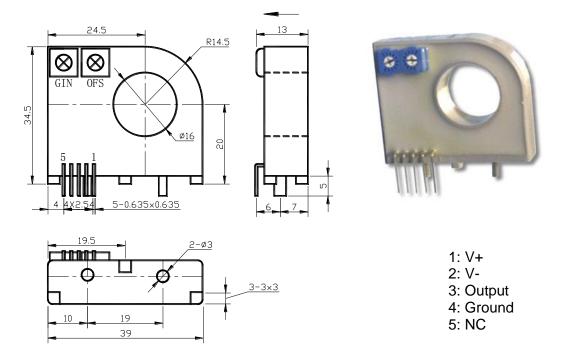
Hall Effect AC/DC Current Sensor CYHCS-RC4

This Hall Effect current sensor can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Frequency conversion timing equipments
Very good linearity	Various power supply
Small size	Uninterruptible power supplies (UPS)
Light in weight	Electric welding machines
Less power consumption	Transformer substation
Window structure	Numerical controlled machine tools
• Electrically isolating the output of the transducer	Electrolyzing and electroplating equipments
from the current carrying conductor	Electric powered locomotive
No insertion loss	Microcomputer monitoring
Current overload capability	Electric power network monitoring

Electrical Data/Input

Primary Nominal Current <i>I</i> _r (A)	Primary Current Measuring Range I _p (A) at Vcc=15V	Aperture Diameter (mm)	Part number
50	± 150	16	CYHCS-RC4-050A
100	± 200	16	CYHCS-RC4-100A
150	± 300	16	CYHCS-RC4-150A
200	± 400	16	CYHCS-RC4-200A
250	± 500	16	CYHCS-RC4-250A
300	± 450	16	CYHCS-RC4-300A


Technical Data:

Supply Voltage	$V_{cc} = \pm 15V \pm 5\%,$
Current Consumption	$I_c < 20mA$
RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min,	$V_{is} < 10mA$
Isolation Resistance at 500V DC	$R_{is} > 500 M\Omega$
Output Voltage (analog) at I_r , $T_A=25^{\circ}$ C:	$V_{out} = 4V$
Output Impedance:	$R_{out} < 150\Omega$
Load Resistor:	$R_L > 10k\Omega$
Accuracy at I_r , $T_A=25^{\circ}$ C (without offset),	X < 1.0%
Linearity from 0 to I_r , $T_A=25^{\circ}$ C,	$E_L < 1.0\%$ FS
Electric Offset Voltage, $T_A=25^{\circ}$ C,	$V_{oe} < 20mV$
Magnetic Offset Voltage ($I_r \rightarrow 0$)	$V_{om} < \pm 15mV$
Thermal Drift of Offset Voltage,	$V_{ot} < \pm 1.0mV/°C$

Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (*f*=1k Hz) Frequency Bandwidth (-3dB), Ambient Operating Temperature, Ambient Storage Temperature, T.C. $< \pm 0.1\%$ /°C $t_r < 7\mu s$ $f_b = 50 \text{ kHz}$ $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-E

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal	Measuring	Output voltage	Aperture	Part number
Current I _r (A)	Range (A)	(analog) (V)	Diameter (mm)	
25	± 75			CYHCS-E25A-C
50	± 150			CYHCS-E50A-C
100	± 300			CYHCS-E100A-C
150	± 450	4 +1.0%	Ø20.5	CYHCS-E150A-C
200	± 600	4 +1.0%	020.5	CYHCS-E200A-C
300	± 900			CYHCS-E300A-C
400	±1000			CYHCS-E400A-C
500	±1000			CYHCS-E500A-C

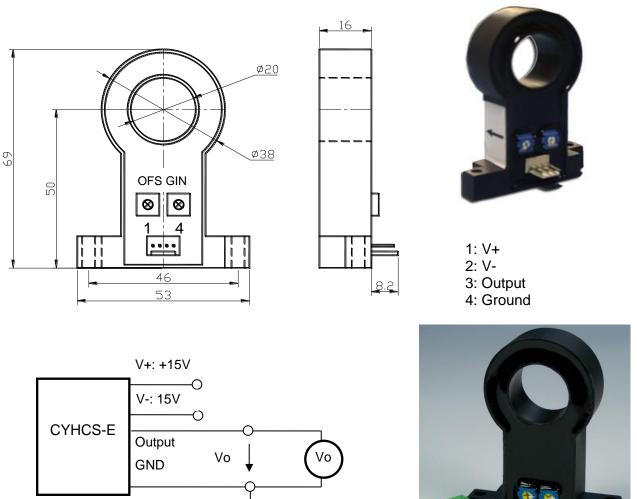
(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage Current Consumption Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C (without offset), Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Thermal Drift (-10°C to 50°C), Frequency bandwidth (- 3 dB): Response Time at 90% of I_P (f=1k Hz) V_{cc} = ±15V ± 5%, I_c < 25mA 2.5kV > 500 MΩ

X < 1.0% $E_L < 1.0\%$ FS $V_{oe} < \pm 25$ mV $V_{om} < \pm 20$ mV $V_{ot} < \pm 0.5$ mV/°C T.C. $< \pm 0.1\%$ /°C DC-50kHz $t_r < 3\mu$ s



 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

PIN Definition and Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect AC/DC Current Sensor CYHCS-C2S

This Hall Effect current sensor can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Frequency conversion timing equipment
Very good linearity	Various power supply
Light in weight	Uninterruptible power supplies (UPS)
Less power consumption	Electric welding machines
Window structure	Numerical controlled machine tools
Electrically isolating the output of the	Electrolyzing and electroplating equipment
transducer from the current carrying conductor	Electric powered locomotive
No insertion loss	Microcomputer monitoring
 Current overload capability 	Electric power network monitoring

Electrical Data

Primary Nominal Current <i>I</i> _r (A)	Primary Current Measuring Range I _p (A) at Vcc=5V	Output Voltage (analog) (V)	Part number
30	± 40.5		CYHCS-C2S-30A-C
50	± 67.5		CYHCS-C2S-50A-C
100	± 135		CYHCS-C2S-100A-C
200	± 270	2.5VDC±1.5V	CYHCS-C2S-200A-C
300	± 405	2.5VDC±1.5V	CYHCS-C2S-300A-C
400	± 540		CYHCS-C2S-400A-C
500	± 675		CYHCS-C2S-500A-C
600	± 810		CYHCS-C2S-600A-C

(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage	<i>V_{cc}</i> = +5V ± 5%
Current Consumption	<i>I_c</i> < 25mA
RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min,	<i>V_{is}</i> <10mA
Output Impedance:	$R_{ m out}$ < 150 Ω
Load Resistance:	$R_{ m L}$ > 10k Ω
Accuracy at I_r , $T_A=25^{\circ}$ C (without offset),	X <1.0%
Linearity from 0 to I_r , $T_A=25^{\circ}$ C,	E_L <1.0% FS
Electric Offset Voltage, $T_A=25^{\circ}$ C,	V_{oe} =2.5VDC ±1.0%
Magnetic Offset Voltage ($I_r \rightarrow 0$)	V_{om} <±15mV
Thermal Drift of Offset Voltage,	V_{ot} <±1.0mV/°C
Thermal Drift (-10°C to 50°C),	T.C. < ±0.1% /°C
Response Time at 90% of I_P ($f=1$ k Hz)	t_r < 7µs
Frequency Bandwidth (-3dB),	f_b = 0-20 kHz
General Data	
Ambient Operating Temperature	T25°C - +85°C

Ambient Operating Temperature, Ambient Storage Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Relation between Input Current and Output Voltage

Take the sensor CYHCS-C2S-100A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1. Rel	ation between	the input curre	ent and output voltage
--------------	---------------	-----------------	------------------------

Input current (A)	-135	-100	-75	-50	0	50	75	100	135
Output voltage (V)	0.475	1.0	1.375	1.75	2.5	3.25	3.625	4.0	4.525

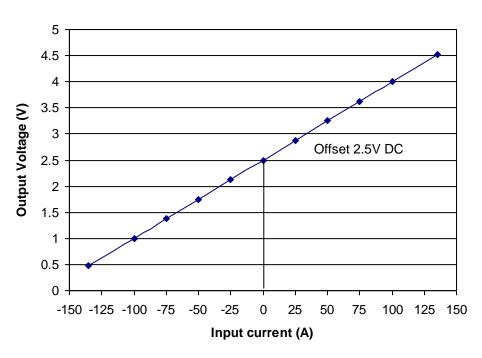


Fig. 1 Relation between the input current (DC) and output voltage (DC)

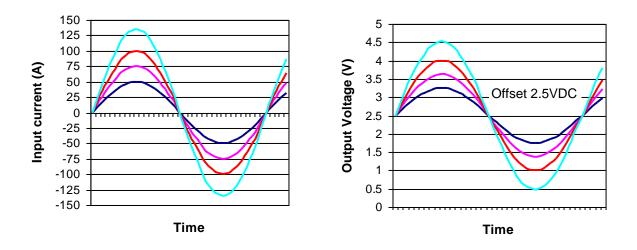
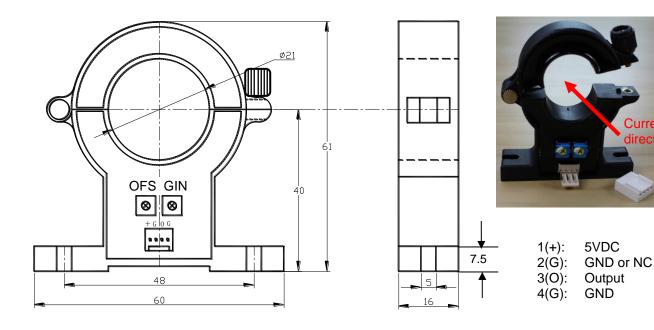
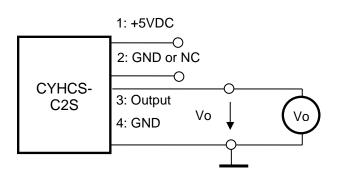



Fig. 2 Relation between the input current (AC) and output voltage (AC)

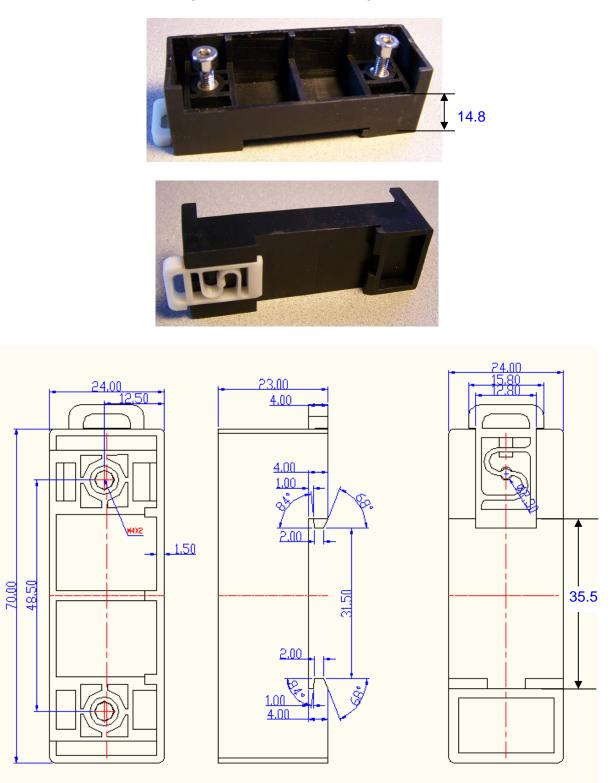
Current direction


PIN Definition and Dimensions

OFS: Offset Adjustment

GIN: Gain Adjustment

Connection



- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.

Markt Schwabener Str. 8 D-85464 Finsing Germany

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom und the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom und the middle of hole is 54.8mm)

Split Core Hall Effect AC/DC Current Sensor CYHCS-RC2S

This Hall Effect current sensor can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Frequency conversion timing equipment
Very good linearity	 Various power supply
Light in weight	 Uninterruptible power supplies (UPS)
Less power consumption	Electric welding machines
Window structure	Numerical controlled machine tools
• Electrically isolating the output of the	Electrolyzing and electroplating equipment
transducer from the current carrying conductor	Electric powered locomotive
No insertion loss	Microcomputer monitoring
Current overload capability	 Electric power network monitoring

Electrical Data

Primary Nominal Current <i>I_r</i> (A)	Primary Current Measuring Range I _p (A) at Vcc=12V	Output Voltage (analog) (V)	Part number
30	± 60		CYHCS-RC2S-30A-XC
50	± 100		CYHCS-RC2S-50A-XC
100	± 200		CYHCS-RC2S-100A-XC
200	± 400	5VDC±2V	CYHCS-RC2S-200A-XC
300	± 600	5VDC±2V	CYHCS-RC2S-300A-XC
400	± 800		CYHCS-RC2S-400A-XC
500	± 900		CYHCS-RC2S-500A-XC
600	± 900		CYHCS-RC2S-600A-XC

Supply Voltage: X=3, V_{cc} = +12VDC± 5%, ; X=4, V_{cc} =+15VDC± 5%; X=5, V_{cc} =+24VDC± 5%, (Connector: Molex connector C=M; Phoenix Connector: C=P)

Current Consumption	$I_c < 25 \text{mA}$
RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min,	$V_{is} < 10 \text{mA}$
Output Impedance:	$R_{out} < 150 \Omega$
Load Resistor:	$R_L > 10 \text{k} \Omega$
Accuracy at I_r , $T_A=25^{\circ}$ C (without offset),	X <1.0%
Linearity from 0 to I_r , $T_A=25^{\circ}$ C,	E_L <1.0% FS
Electric Offset Voltage, $T_A=25^{\circ}$ C,	V_{oe} =5.0VDC ±1.0%
Magnetic Offset Voltage, $(I_r \rightarrow 0)$	V_{om} <±15mV
Thermal Drift of Offset Voltage,	V_{ot} <±1.0mV/°C
Thermal Drift (-10°C to 50°C),	T.C. < ±0.1% /°C
Response Time at 90% of I_P ($f=1$ k Hz)	t_r < 7µs
Frequency Bandwidth (-3dB),	f_b = 0-20 kHz
Mean Time Between Failures (MTBF):	50k - 100k hours
General Data	

Ambient Operating Temperature, Ambient Storage Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Relation between Input Current and Output Voltage

Taking the sensor CYHCS-RC2S-100A-3 as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

oltage

Table 1. Relation between the input current and output voltage									
Input current (A)	-200	-150	-100	-50	0	50	100	150	200
Output voltage (V)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0

Fig. 1 Relation between the input current (DC) and output voltage (DC)

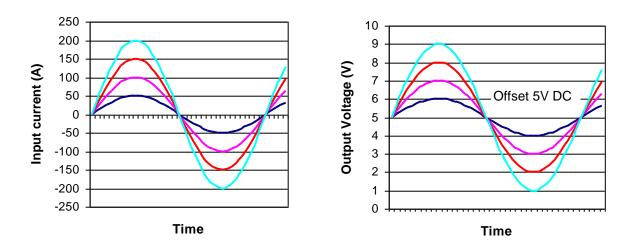
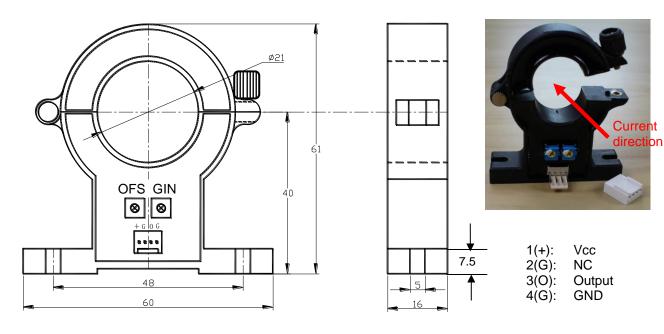
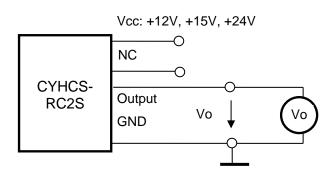



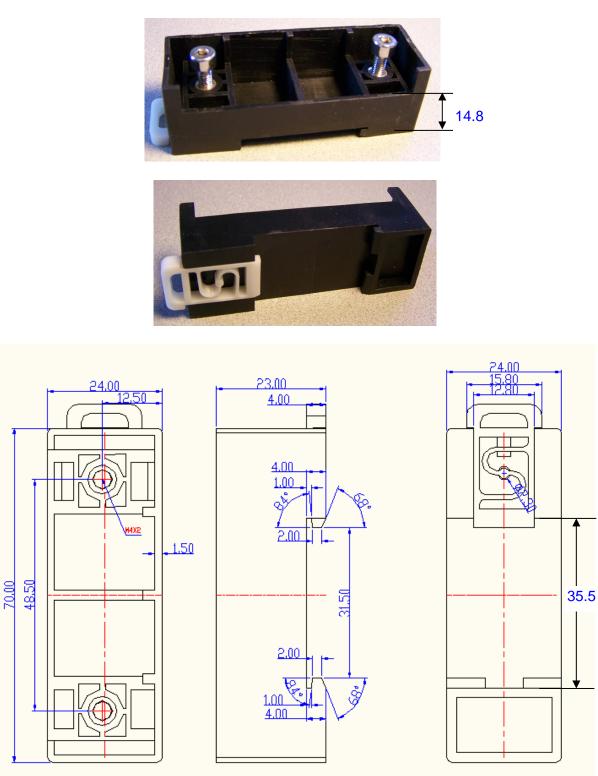
Fig. 2 Relation between the input current (AC) and output voltage (AC)


PIN Definition and Dimensions

OFS: Offset Adjustment

GIN: Gain Adjustment

Connection



- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.

Markt Schwabener Str. 8 D-85464 Finsing Germany

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom und the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom und the middle of hole is 54.8mm)

Split Core Hall Effect AC/DC Current Sensor CYHCS-C2T

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
Excellent accuracy	Frequency conversion timing equipment		
Very good linearity	Various power supply		
Light in weight	 Uninterruptible power supplies (UPS) 		
Less power consumption	Electric welding machines		
Window structure with split core	Numerical controlled machine tools		
Electrically isolating the output of the	Electrolyzing and electroplating equipment		
transducer from the current carrying conductor	Electric powered locomotive		
No insertion loss	Microcomputer monitoring		
Current overload capability	Electric power network monitoring		

Electrical Data

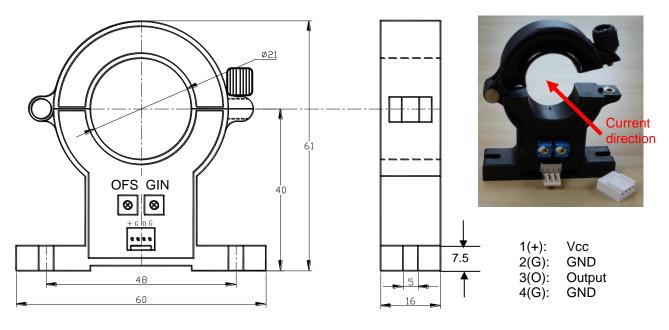
Primary Nominal Current <i>I_r</i> (A)	Primary Current Measuring Range I _p (A) at Vcc=12V	Output Voltage (analog) (V)	Part number
30	± 30		CYHCS-C2T-30A-xnC
50	± 50		CYHCS-C2T-50A-xnC
100	± 100	x=3: 2.5VDC±2.5V	CYHCS-C2T-100A-xnC
200	± 200	x=8: 5VDC ± 5V	CYHCS-C2T-200A-xnC
300	± 300		CYHCS-C2T-300A-xnC
400	± 400		CYHCS-C2T-400A-xnC
500	± 500		CYHCS-C2T-500A-xnC
600	± 600		CYHCS-C2T-600A-xnC

(n=2, *Vcc*= +12VDC; n=3, *Vcc*=+15VDC; n=4, *Vcc*=+24VDC, Connector: Molex connector C=M; Phoenix Connector: C=P)

Current Consumption RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min, Output Impedance: Load Resistor: Accuracy at I_r , T_A =25°C (without offset), Linearity from 0 to I_r , T_A =25°C, Electric Offset Voltage, T_A =25°C, Magnetic Offset Voltage, $I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB),	$I_c < 25 \text{mA}$ $V_{is} < 10 \text{mA}$ $R_{out} < 150 \Omega$ $R_L > 10 k \Omega$ X < 1.0% $E_L < 1.0\%$ FS $V_{oe} = 2.5 \text{VDC} \pm 1.0\%$ or $5 \text{VDC} \pm 1.0\%$ $V_{om} < \pm 15 \text{mV}$ $V_{ot} < \pm 1.0 \text{mV/°C}$ T.C. $< \pm 0.1\%$ /°C $t_r < 7 \mu \text{s}$ $f_b = 0.20 \text{ kHz}$
	· ·

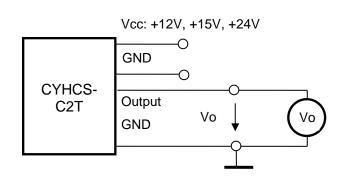
General Data

Ambient Operating Temperature, Ambient Storage Temperature,


> Markt Schwabener Str. 8 D-85464 Finsing Germany

 $T_A = -25^{\circ}C \sim +85^{\circ}C$

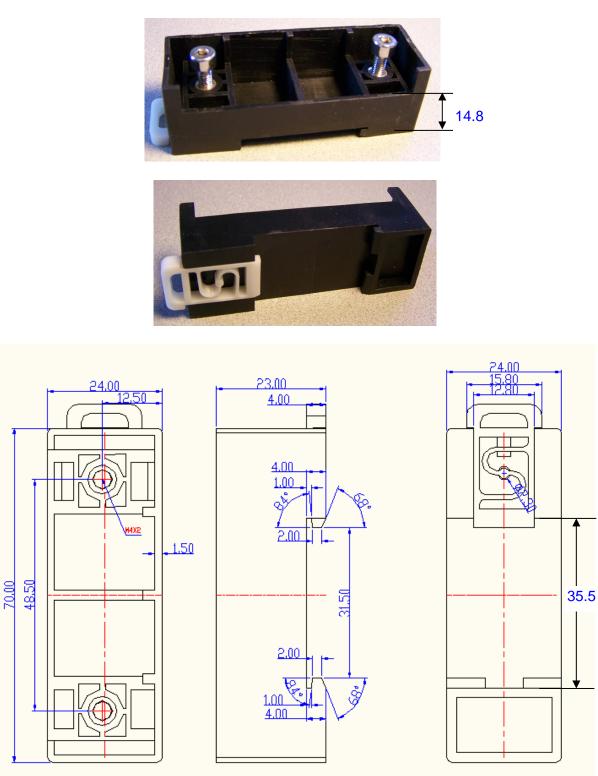
 $T_{\rm S} = -40^{\circ} \rm C \sim +100^{\circ} \rm C$


PIN Definition and Dimensions

OFS: Offset Adjustment

GIN: Gain Adjustment

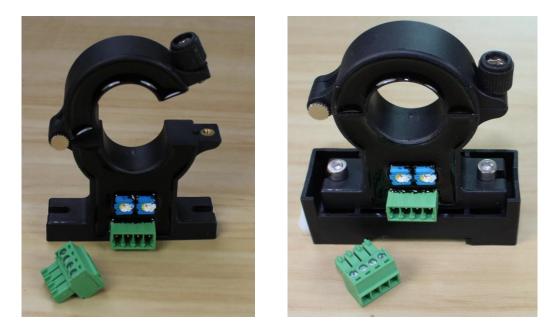
Connection



- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.


Markt Schwabener Str. 8 D-85464 Finsing Germany

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom und the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom und the middle of hole is 54.8mm)

Spilt Core Hall Effect AC/DC Current Sensor CYHCS-RC2

This Hall Effect current sensor can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor. The sensor uses split core and is easily to mount.

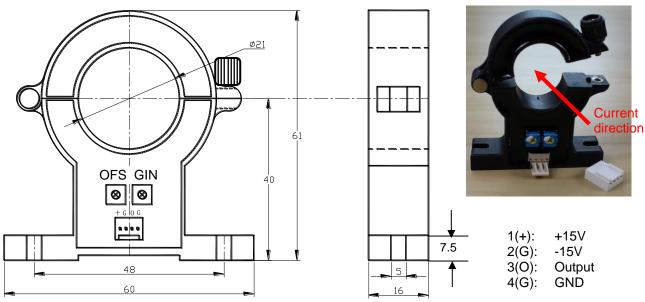
Product Characteristics	Applications
 Excellent accuracy Very good linearity Using split cores and easy mounting Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal Current <i>I_r</i> (A)	Primary Current Measuring Range <i>I</i> _p (A) at Vcc=15V	Output voltage (Analog) (mm)	Part number
30	± 60		CYHCS-RC2-30A-C
50	± 100		CYHCS-RC2-50A-C
100	± 200		CYHCS-RC2-100A-C
200	± 400	4V±1.0%	CYHCS-RC2-200A-C
300	± 600	4V±1.0%	CYHCS-RC2-300A-C
400	± 800		CYHCS-RC2-400A-C
500	± 1000		CYHCS-RC2-500A-C
600	± 1000		CYHCS-RC2-600A-C

(Connector: Molex connector C=M; Phoenix Connector: C=P)

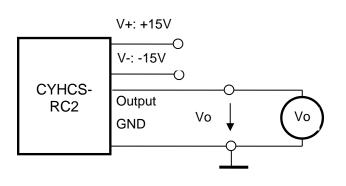
Supply Voltage	V_{cc} = ±15V ± 5%,
Current Consumption	I_c < 25mA
RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min,	V_{is} <10mA
Isolation Resistance at 500V DC	R_{is} >500 M Ω
Output Voltage at I_r , T_A =25°C:	$V_{ m out}$ = 4V
Output Impedance:	$R_{ m out}$ < 150 Ω
Load Resistor:	$R_{ m L}$ > 10k Ω
Accuracy at I_r , $T_A=25^{\circ}$ C (without offset),	X <1.0%
Linearity from 0 to I_r , $T_A=25^{\circ}$ C,	E_L <1.0% FS
Electric Offset Voltage, $T_A=25^{\circ}$ C,	V_{oe} <20mV
Magnetic Offset Voltage ($I_r \rightarrow 0$)	V_{om} <±15mV
Thermal Drift of Offset Voltage,	V_{ot} <±1.0mV/°C
Thermal Drift (-10°C to 50°C),	T.C. < ±0.1% /°C
Response Time at 90% of I_P ($f=1$ k Hz)	t_r < 7 μ s
Frequency Bandwidth (-3dB),	f_b = 50 kHz
Material of Case:	ABS (According to UL94V-0)



 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

General Data

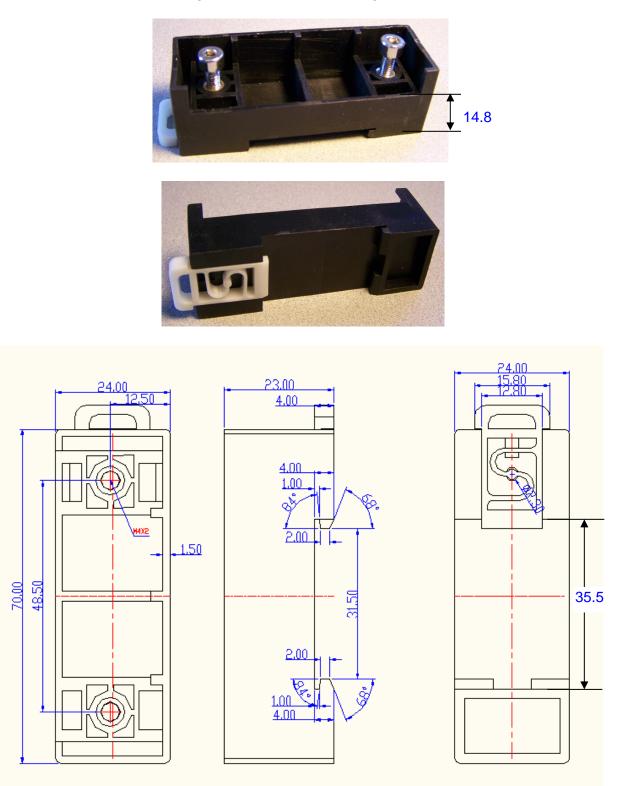
Ambient Operating Temperature, Ambient Storage Temperature,


PIN Definition and Dimensions

OFS: Offset Adjustment

GIN: Gain Adjustment

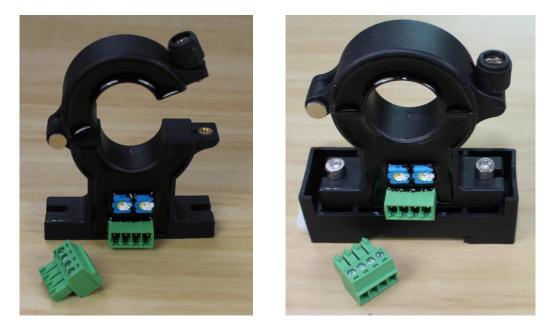
Connection



- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.


Markt Schwabener Str. 8 D-85464 Finsing Germany

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom und the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom und the middle of hole is 54.8mm)

Split Core Hall AC/DC Current Sensor CYHCS-EKAA

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

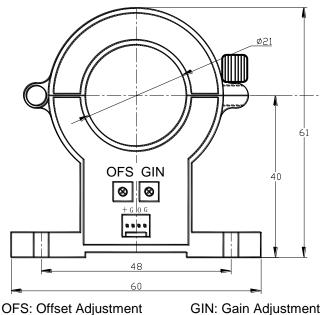
Primary Nominal Current I_r (A)	Measuring Range (A)	Output Current Is (analog) (mA)	Aperture Diameter (mm)	Part number
30	± 60			CYHCS-EKAA30A-C
50	± 100			CYHCS-EKAA50A-C
100	± 200			CYHCS-EKAA100A-C
200	± 400	0 ~20mA ±1.0%	Ø21	CYHCS-EKAA200A-C
300	± 600			CYHCS-EKAA300A-C
400	± 800			CYHCS-EKAA400A-C
500	± 1000			CYHCS-EKAA500A-C

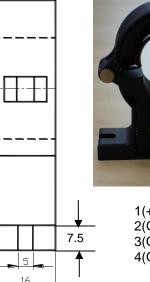
(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage Current Consumption Galvanic isolation, 50/60Hz, 1min: Load resistance: Isolation resistance @ 500 VDC V_{cc} = ±15V ± 5%, I_c < 25mA +ls 2.5kV 10k Ω > 500 M Ω

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C (without offset), Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage, $T_A=25^{\circ}$ C, Thermal Drift of Offset Voltage, Response Time at 90% of I_P (f=1k Hz) Frequency bandwidth (- 3 dB): X <1.0% E_L <1.0% FS V_{oe} <0.05mA V_{oe} <0.05mA V_{ot} <±0.01mA/°C t_r < 5µs 20Hz - 20kHz

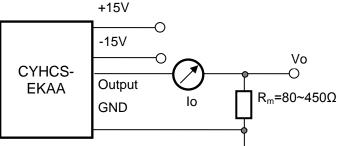



 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

General Data

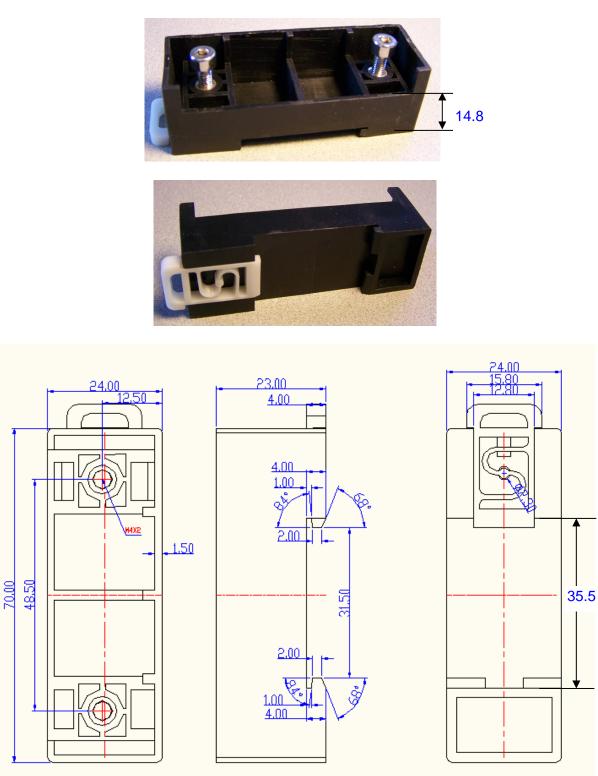
Ambient Operating Temperature, Ambient Storage Temperature,

PIN Definition and Dimensions



1(+):	+15V
2(G):	-15V
3(O):	Output
4(G):	GND

GIN: Gain Adjustment



- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.

Markt Schwabener Str. 8 D-85464 Finsing Germany

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom und the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom und the middle of hole is 54.8mm)

Split Core Hall Effect AC/DC Current Sensor CYHCS-EKB

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring 		

Electrical Data (all data given under connecting a load resistance of $10k\Omega$)

Primary Nominal Current <i>I_r</i> (A)	Measuring Range (A)	Output voltage (Analog) (V)	Aperture Diameter (mm)	Part number	
50	± 100			CYHCS-EKB50A-C	
100	± 200			CYHCS-EKB100A-C	
200	± 400	4 ±1.0%			CYHCS-EKB200A-C
400	± 800		Ø40.5	CYHCS-EKB400A-C	
500	± 1000		£1.0% Ø40.3	CYHCS-EKB500A-C	
800	± 1600				CYHCS-EKB800A-C
1000	± 2000				CYHCS-EKB1000A-C
2000	± 3000			CYHCS-EKB2000A-C	

(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage Current Consumption Galvanic isolation, 50/60Hz, 1min: Load resistance: Isolation resistance @ 500 VDC

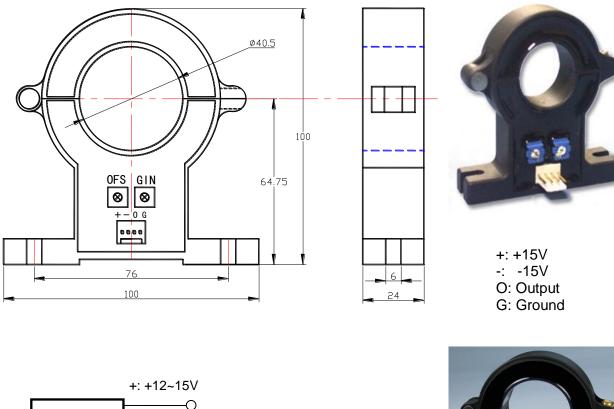
Accuracy and Dynamic performance data

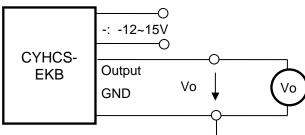
Accuracy at I_r , $T_A=25^{\circ}$ C (without offset), Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (f=1k Hz) Frequency bandwidth (- 3 dB):

> Markt Schwabener Str. 8 D-85464 Finsing Germany

V_{cc}= ±12V~15VDC I_c < 25mA 5kV 10kΩ > 500 MΩ

X <1.0% E_L <1.0% FS V_{oe} <20mV V_{om} <±20mV V_{ot} <±0.5mV/°C T.C. < ±0.1% /°C t_r < 5µs DC-20kHz




 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

PIN Definition and Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect AC/DC Current Sensor CYHCS-C3S

This Hall Effect current sensor can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss 	 Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring 		
Current overload capability	Electric power network monitoring		

Electrical Data

Primary Nominal Current <i>I</i> _r (A)	Primary Current Measuring Range I _p (A) at Vcc=5V	Output Voltage (analog) (V)	Part number
50	± 67.5		CYHCS-C3S-50A-C
100	± 135		CYHCS-C3S-100A-C
200	± 270		CYHCS-C3S-200A-C
300	± 405		CYHCS-C3S-300A-C
400	± 540	2.5VDC±1.5V	CYHCS-C3S-400A-C
500	± 675		CYHCS-C3S-500A-C
800	± 1080		CYHCS-C3S-800A-C
1000	± 1350		CYHCS-C3S-1000A-C
2000	± 2700		CYHCS-C3S-2000A-C

(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage Current Consumption
RMS Voltage for 5kV AC isolation test, 50/60Hz, 1min,
Output Impedance:
Load Resistor:
Accuracy at I_r , T_A =25°C (without offset),
Linearity from 0 to I_r , $T_A=25^{\circ}$ C,
Electric Offset Voltage, $T_A=25^{\circ}C$,
Magnetic Offset Voltage $(I_r \rightarrow 0)$
Thermal Drift of Offset Voltage,
Thermal Drift (-10°C to 50°C),
Response Time at 90% of I _P (f=1k Hz)
Frequency Bandwidth (-3dB),

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

> Markt Schwabener Str. 8 D-85464 Finsing Germany

 $t_r < 7\mu s$ $f_b = 0-20 \text{ kHz}$

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$

 $T_{\rm S} = -40^{\circ}{\rm C} \sim +100^{\circ}{\rm C}$

 V_{cc} = +5V ± 5% I_c < 25mA V_{is} <10mA R_{out} < 150Ω R_L > 10kΩ X <1.0% E_L <1.0% FS V_{oe} =2.5VDC±1.0% V_{om} <±15mV V_{ot} <±1.0mV/°C T.C. < ±0.1% /°C

Relation between Input Current and Output Voltage

Take the sensor CYHCS-C3S-100A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1.	Relation between	the input current and	output voltage
		the input our one and	output voltage

Input current (A)	-135	-100	-75	-50	0	50	75	100	135
Output voltage (V)	0.475	1.0	1.375	1.75	2.5	3.25	3.625	4.0	4.525

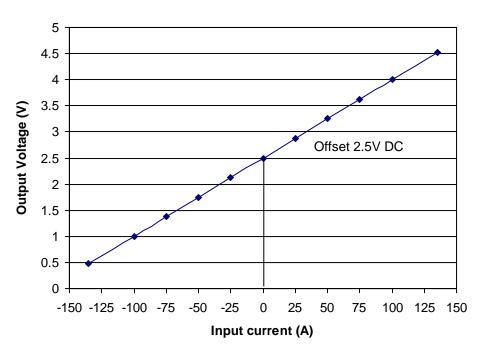


Fig. 1 Relation between the input current (DC) and output voltage (DC)

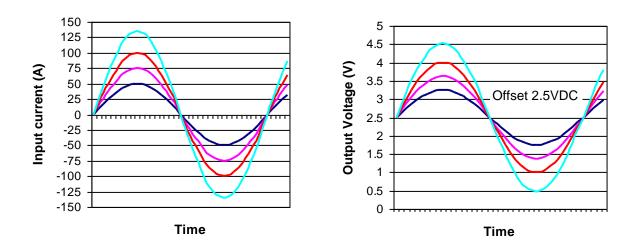
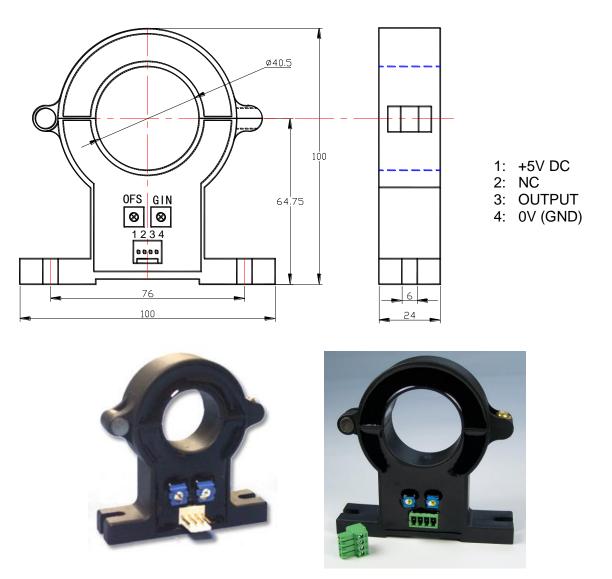



Fig. 2 Relation between the input current (AC) and output voltage (AC)

PIN Definition and Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect AC/DC Current Sensor CYHCS-C3T

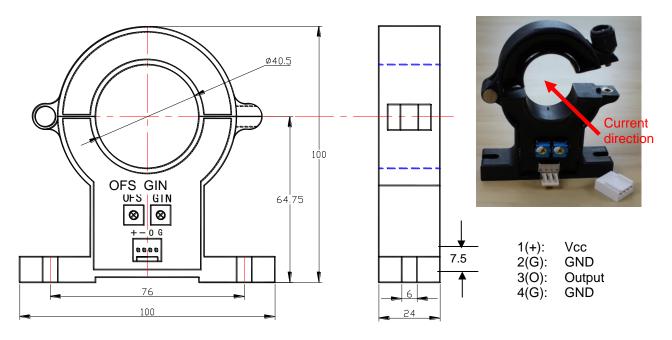
This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Frequency conversion timing equipment
Very good linearity	 Various power supply
Light in weight	 Uninterruptible power supplies (UPS)
Less power consumption	 Electric welding machines
Window structure with split core	 Numerical controlled machine tools
Electrically isolating the output of the	Electrolyzing and electroplating equipment
transducer from the current carrying conductor	Electric powered locomotive
No insertion loss	Microcomputer monitoring
Current overload capability	Electric power network monitoring

Electrical Data

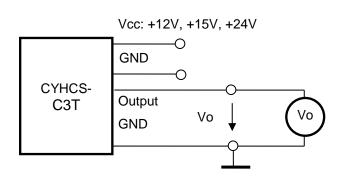
Primary Nominal Current <i>I</i> _r (A)	Primary Current Measuring Range I _p (A) at Vcc=12V	Output Voltage (analog) (V)	Part number
50	± 50		CYHCS-C3T-50A-xnC
100	± 100		CYHCS-C3T-100A-xnC
200	± 200	x=3: 2.5VDC±2.5V	CYHCS-C3T-200A-xnC
400	± 400	x=8: 5VDC ± 5V	CYHCS-C3T-400A-xnC
500	± 500		CYHCS-C3T-500A-xnC
800	± 800		CYHCS-C3T-800A-xnC
1000	± 1000		CYHCS-C3T-1000A-xnC
1500	± 1500]	CYHCS-C3T-1500A-xnC
2000	± 2000		CYHCS-C3T-2000A-xnC

(n=2, *Vcc*= +12VDC; n=3, *Vcc*=+15VDC; n=4, *Vcc*=+24VDC, Connector: Molex connector C=M; Phoenix Connector: C=P)


Current Consumption
RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min,
Output Impedance:
Load Resistor:
2000
Accuracy at I_r , $T_A=25^{\circ}$ C (without offset),
Linearity from 0 to I_r , $T_A=25^{\circ}$ C,
Electric Offset Voltage, T_A =25°C,
Magnetic Offset Voltage $(I_r \rightarrow 0)$
Thermal Drift of Offset Voltage,
Thermal Drift (-10°C to 50°C),
Response Time at 90% of I_P (f=1k Hz)
Frequency Bandwidth (-3dB),
Mean Time Between Failures (MTBF):
General Data

Ambient Operating Temperature, Ambient Storage Temperature, $I_c < 25 \text{mA}$ $V_{is} < 10 \text{mA}$ $R_{out} < 150 \Omega$ $R_L > 10 \text{k} \Omega$ X < 1.0% $E_L < 1.0\%$ FS $V_{oe} = 5 \text{VDC} \pm 1.0\%$ or $5 \text{VDC} \pm 1.0\%$ $V_{ot} < \pm 1.0 \text{mV/}^{\circ} \text{C}$ $T.C. < \pm 0.1\%$ /°C $t_r < 7 \mu \text{s}$ $f_b = 0.20 \text{ kHz}$ 50 k - 100 k hours

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$


PIN Definition and Dimensions

OFS: Offset Adjustment

GIN: Gain Adjustment

Connection

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-EA

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

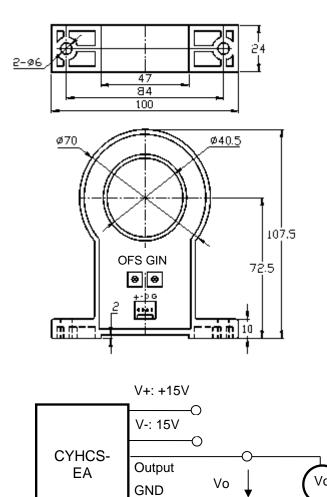
Electrical Data

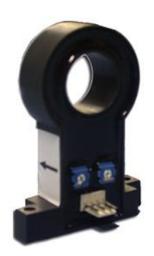
Primary Nominal Current <i>I</i> _r (A)	Measuring Range (A)	Output voltage (Analog) (V)	Aperture Diameter (mm)	Part number
50	± 100			CYHCS-EA50A-C
100	± 200			CYHCS-EA100A-C
200	± 400			CYHCS-EA200A-C
400	± 800	4 +1.0%	Ø40.5	CYHCS-EA400A-C
500	± 1000	4 +1.0%	040.5	CYHCS-EA500A-C
800	± 1600			CYHCS-EA800A-C
1000	± 2000			CYHCS-EA1000A-C
2000	± 3000			CYHCS-EA2000A-C

(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage Current Consumption Galvanic isolation, 50/60Hz, 1min: Load resistance: Isolation resistance @ 500 VDC $V_{cc} = \pm 15V \pm 5\%,$ $I_c < 25mA$ 5kV $10k\Omega$ > 500 M Ω

Accuracy and Dynamic performance data


Accuracy at I_r , $T_A=25^{\circ}$ C (without offset), Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage, $T_r \rightarrow 0$) Thermal Drift of Offset Voltage, Thermal Drift (-10°C to 50°C), Frequency bandwidth (- 3 dB): Response Time at 90% of I_P (f=1k Hz) di/dt following accuracy: X < 1.0% $E_L < 1.0\%$ FS $V_{oe} < 20mV$ $V_{om} < \pm 40mV$ $V_{ot} < \pm 0.5mV/^{\circ}C$ T.C. $< \pm 0.1\%$ / $^{\circ}C$ DC-50kHz $t_r < 3\mu s$ 70A/ μs



General Data

Ambient Operating Temperature, Ambient Storage Temperature,

PIN Definition and Dimensions

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

> 1(+): +15V 2(-): -15V 3(O): Output 4(G): Ground

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-K2A

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Electric power network monitoring Inverters etc.

Electrical Data

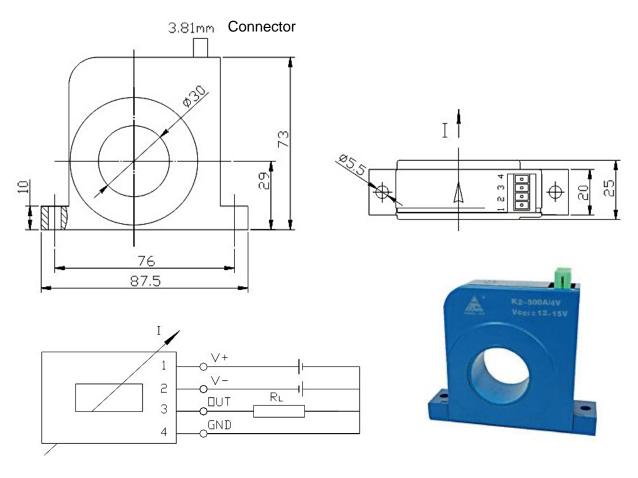
Primary Nominal Current <i>I</i> _r (A)	Measuring Range (A)	Output Signal (Voltage or current)	Aperture Diameter (mm)	Part number
500	1000			CYHCS-K2A500A-X
600	1200	X 4 4)/ . 4 00/		CYHCS-K2A600A-X
700	1400	X=1: ±4V ±1.0% X=3: 0-5VDC ±1.0%	Ø30	CYHCS-K2A700A-X
800	1600	$X=3:0-5VDC \pm 1.0\%$ X=5: 4-20mADC ±1.0%	030	CYHCS-K2A800A-X
900	1800	X=3. 4-2011ADC ±1.0 %		CYHCS-K2A900A-X
1000	2000			CYHCS-K2A1000A-X

Supply Voltage Current Consumption Galvanic isolation, 50/60Hz, 1min: Load resistance: Isolation resistance @ 500 VDC $V_{cc} = \pm 12 \sim 15$ VDC $I_c < 25$ mA 2.5 kV 10 kΩ > 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C (without offset),X < 1.0%Linearity from 0 to I_r , $T_A=25^{\circ}$ C, $E_L < 1.0\%$ FSElectric Offset Voltage, $T_A=25^{\circ}$ C, $V_{oe} < 20$ mVMagnetic Offset Voltage ($I_r \rightarrow 0$) $V_{om} < \pm 25$ mVThermal Drift of Offset Voltage, $V_{ot} < \pm 1$ mV/°CResponse Time at 90% of I_P (f=1k Hz) $t_r < 5\mu$ sFrequency bandwidth (- 3 dB):DC-50kHz

General Data


Ambient Operating Temperature, Ambient Storage Temperature,

> Markt Schwabener Str. 8 D-85464 Finsing Germany

 $T_A = -10^{\circ}\text{C} \sim +70^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +85^{\circ}\text{C}$

Dimensions

Terminal Arrangement:

- 1: V+ (+12~15VDC)
- 2: V- (-12~15VDC)
- 3: OUTPUT
- 4: GND

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-K2B

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuits. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Electric power network monitoring Inverters etc.

Electrical Data

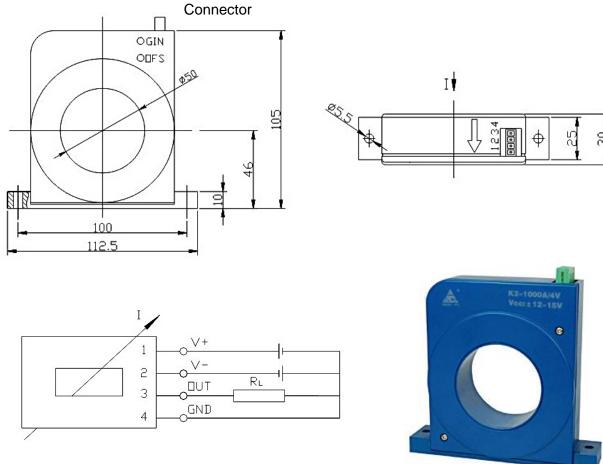
Primary Nominal Current <i>I</i> _r (A)	Measuring Range (A)	Output Signal (Voltage or current)	Aperture Diameter (mm)	Part number
1000	2000			CYHCS-K2B1000A-X
1200	2400	X 4 4 X 4 00/		CYHCS-K2B1200A-X
1500	3000	X=1: ±4V ±1.0% X=3: 0-5VDC ±1.0%	Ø50	CYHCS-K2B1500A-X
2000	4000	$X=3:0-5VDC \pm 1.0\%$ X=5: 4-20mADC ±1.0%	250	CYHCS-K2B2000A-X
2500	5000	∧=3. 4-2011ADC ±1.0 %		CYHCS-K2B2500A-X
3000	6000			CYHCS-K2B3000A-X

Supply Voltage	<i>V_{cc}</i> = ±12~15VDC
Current Consumption	<i>l_c</i> < 25mA
Galvanic isolation, 50/60Hz, 1min:	2.5kV
Load resistance:	10kΩ
Isolation resistance @ 500 VDC	> 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C (without offset),	X <1.0%
Linearity from 0 to I_r , $T_A=25^{\circ}$ C,	E _L <1.0% FS
Electric Offset Voltage, $T_A=25^{\circ}$ C,	V _{oe} <20mV
Magnetic Offset Voltage ($I_r \rightarrow 0$)	V _{om} <±25mV
Thermal Drift of Offset Voltage,	V _{ot} <±1mV/°C
Response Time at 90% of I_P ($f=1$ k Hz)	t _r < 5μs
Response Time at 90% of <i>I_P</i> (<i>t</i> =1k Hz)	t₂ < 5µs
Frequency bandwidth (- 3 dB):	DC-50kHz

General Data


Ambient Operating Temperature, $T_A = -10^{\circ}\text{C} \sim +70^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +85^{\circ}\text{C}$

Markt Schwabener Str. 8 D-85464 Finsing Germany

Chen Y ang Technologies GmbH & Co KG

Dimensions

Terminal Arrangement:

- 1: V+ (+12~15VDC)
- 2: V- (-12~15VDC)
- 3: OUTPUT
- 4: GND

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-K2

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuits. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Electric power network monitoring Inverters etc. 		

Electrical Data

Primary Nominal Current <i>I</i> _r (A)	Measuring Range (A)	Output Signal (Voltage or current)	Aperture Diameter (mm)	Part number
300	600			CYHCS-K2-300A-X
500	800			CYHCS-K2-500A-X
600	900	X=0: ±4V ±1.0%		CYHCS-K2-600A-X
800	1100	$X=0. \pm 4V \pm 1.0\%$ X=1: $\pm 5V \pm 1.0\%$	Ø55	CYHCS-K2-800A-X
1000	1300	∧=1. ±3V ±1.0 %		CYHCS-K2-1000A-X
1200	1500			CYHCS-K2-1200A-X
1500	1800			CYHCS-K2-1200A-X

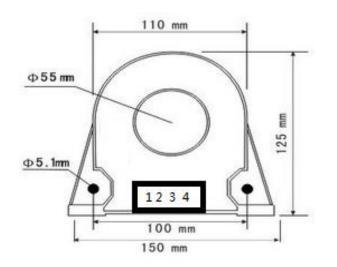
Supply Voltage Current Consumption at ±15VDC Galvanic isolation, 50/60Hz, 1min: Load resistance: Isolation resistance @ 500 VDC V_{cc}= ±12~15VDC I_c < 20mA 2.5kV ≥20kΩ > 500 MΩ

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$

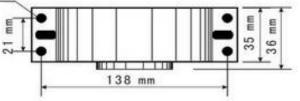
 $T_{\rm S} = -40^{\circ}{\rm C} \sim +100^{\circ}{\rm C}$

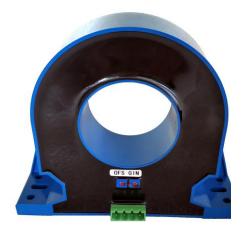
Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C (without offset), Linearity from 0 to I_r , $T_A=25^{\circ}$ C,	X <1.0% <i>E</i> ⊨ <1.0% FS
Electric Offset Voltage, $T_A=25^{\circ}$ C,	V _{oe} <25mV
Magnetic Offset Voltage $(I_r \rightarrow 0)$	V_{om} <±20mV
Thermal Drift of Offset Voltage, Ta=-25°C~85°C	V _{ot} <±1mV/°C
Response Time at 90% of I_P (f=1k Hz)	<i>t</i> _r < 3µs
Frequency bandwidth (- 3 dB):	DC-20kHz


General Data

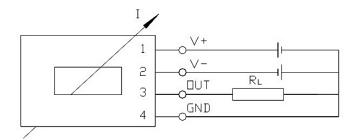
Ambient Operating Temperature, Ambient Storage Temperature,


> Markt Schwabener Str. 8 D-85464 Finsing Germany



Dimensions

Φ5.1mm



Terminal Arrangement:

- 1: V+ (+12~15VDC)
- 2: V- (-12~15VDC)
- 3: OUTPUT 4: GND
- OFS: Offset adjustment
- GIN: Gain adjustment

Connection

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-K2C

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary and secondary circuits. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Electric power network monitoring Inverters etc. 	

Electrical Data

Primary Nominal	Measuring	Output Signal	Aperture	Part number
Current I_r (A)	Range (A)	(Voltage or current)	Diameter (mm)	
1000	2000			CYHCS-K2C1000A-X
2000	4000	X=1: ±4V ±1.0% X=3: 0-5VDC ±1.0% X=5: 4-20mADC ±1.0%		CYHCS-K2C2000A-X
2500	5000			CYHCS-K2C2500A-X
3000	6000			CYHCS-K2C3000A-X
3500	7000		Ø85	CYHCS-K2C3500A-X
4000	8000			CYHCS-K2C4000A-X
4500	9000			CYHCS-K2C4500A-X
5000	10000			CYHCS-K2C5000A-X
6000	12000			CYHCS-K2C6000A-X
Supply Voltage			V	′ _{cc} = ±12~15VDC
Current Consumption			I _c	< 25mA
Galvanic isolation, 50/60Hz, 1min:			2	.5kV
Load resistance:			1	0kΩ

Accuracy and Dynamic performance data

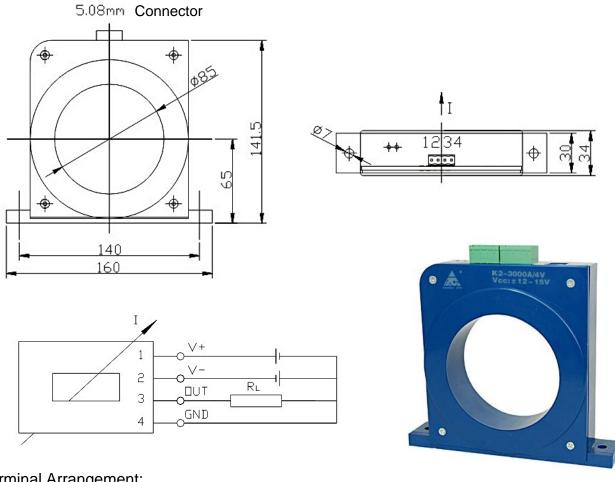
Isolation resistance @ 500 VDC

Electric Offset Voltage, $T_A=25^{\circ}$ C, V_o Magnetic Offset Voltage ($I_r \rightarrow 0$) V_o Thermal Drift of Offset Voltage, V_o Response Time at 90% of I_P ($f=1k$ Hz) $t_r < 1000$	E _L <1.0% FS / _{oe} <20mV / _{om} <±25mV / _{ot} <±1mV/°C γ < 5μs DC-50kHz
---	---

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

> Markt Schwabener Str. 8 D-85464 Finsing Germany


 $T_A = -10^{\circ}\text{C} \sim +70^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +85^{\circ}\text{C}$

> 500 MΩ

Chen Yang **Technologies GmbH & Co KG**

Dimensions

Terminal Arrangement:

1:	V+	(+12~15VDC)
2:	V-	(-12~15VDC)

- OUTPUT 3:
- 4: GND

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer.