

Catalogue Open Loop Hall Effect AC/DC Current Sensors Transducers Mounted on Primary Cable

Copyright© 2020, ChenYang Technologies GmbH & Co. KG

All rights reserved. No part of this catalogue may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright holder.

Contact Address:

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel: +49 (0) 8121-25 74 100 Fax: +49 (0) 8121-2574 101 Email: info@chenyang.de Internet: www.chenyang.de

Tel:

Fax:

+49 (0) 8121-25 74 100

+49 (0) 8121-25 74 101

Contents

Hall Effect AC/DC Current Sensor CYHCS-EKT (Split Core)	1
Hall Effect AC/DC Current Sensor CYHCS-EKC (Split Core)	3
Hall Effect AC/DC Current Sensor CYHCS-EKGT (Split Core)	
Hall Effect AC/DC Current Sensor CYHCS-EDT	
Hall Effect AC/DC Current Sensor CYHCS-ED	O

Tel:

Fax:

+49 (0) 8121-25 74 100 +49 (0) 8121-25 74 101

Email: info@chenyang.de

Internet: www.chenyang.de

.

Split Core Hall Effect AC/DC Current Sensor CYHCS-EKT

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipments Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipments Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal	Primary Current	Output Voltage	Part number
Current I_r (A)	Measuring Range $I_p(A)$	(V)	
10A	0 ~ ± 20A		CYHCS-EKT-10A-n
20A	0 ~ ± 40A	0.51/.41/4.00/	CYHCS-EKT-20A-n
25A	0 ~ ± 50A	2.5V±1V ±1.0%	CYHCS-EKT-25A-n
50A	0 ~ ± 80A		CYHCS-EKT-50A-n

n=2 for power supply: +5VDC; n=3

n=3 for power supply: +12VDC

Supply Voltage: Current Consumption Isolation Voltage

Output Voltage at I_r , T_A =25°C:

Reverse Voltage: Output Impedance: Load Resistor:

Accuracy at I_r , T_A =25°C (without offset), Linearity from 0 to I_r , T_A =25°C, Electric Offset Voltage, T_A =25°C, Magnetic Offset Voltage ($I_r \rightarrow 0$)

Thermal Drift of Offset Voltage (Ip=0, -25°C~+85°C),

Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (f=1k Hz)

Frequency Bandwidth (-3dB),

 V_{cc} =+12VDC ±25% or +5VDC

 $I_{c} < 10 \text{mA}$

2,5kV, 50/60Hz, 1min

 $V_{\text{out}} = 2.5 \text{V} \pm 1 \text{V} \pm 1.0\%$

 $V_{rev} = 18V > 1hr$

 $R_{\rm out}$ < 150 Ω $R_{\rm L}$ > 4.7k Ω

X < 1.0%

 $E_L < 0.5\% FS$

 $V_{oe} = 2.5V \pm 25mV$ $V_{om} < \pm 20mV$

 V_{ot} <±0.25mV/°C T.C. < ±0.1% /°C

 $t_r < 7 \mu s$ $f_b = DC-2.2 \text{ kHz}$

General Data

Ambient Operating Temperature, T_A =-40°C ~ +85°C Ambient Storage Temperature, T_S =-55°C ~ +100°C Unit weight: 21g / unit

PIN Definition and Dimensions

1) Pin arrangement:

1 (V+): +12V

2 (NC): NC

3 (OUT): OUTPUT

4 (GND): 0V (GND)

2) Pin arrangement:

1 (NC): NC

2 (V+): +5VDC

3 (OUT): OUTPUT

4 (GND): 0V (GND)

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect AC/DC Current Sensor CYHCS-EKC

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipments Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal	Primary Current	Output Voltage	Part number
Current I_r (A)	Measuring Range $I_p(A)$	(Analog) (V)	
30A	0 ~ ± 60A		CYHCS-EKC-30A
50A	0 ~ ± 100A		CYHCS-EKC-50A
80A	0 ~ ± 160A	4 ±1.0%	CYHCS-EKC-80A
100A	0 ~ ± 200A	4 ±1.076	CYHCS-EKC-100A
200A	0 ~ ± 400A		CYHCS-EKC-200A
300A	0 ~ ± 600A		CYHCS-EKC-300A

Supply Voltage: V_{cc} =±12V~±15VDC ± 5% **Current Consumption** I_c < 25mA at Vcc=±15VDC Isolation Voltage 2,5kV, 50/60Hz, 1min Output Voltage at I_r , T_A =25°C: $V_{\text{out}} = 4 \text{VDC}$ Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_{\rm L} > 10 {\rm k}\Omega$ Accuracy at I_r , T_A =25°C (without offset), X < 1.0% Linearity from 0 to I_r , $T_A=25$ °C, E_L <1.0% FS Electric Offset Voltage, T_A =25°C, V_{oe} <±25mV Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 25 \text{mV}$ Thermal Drift of Offset Voltage, -25°C~+85°C V_{ot} <±1.0mV/°C Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$ Frequency Bandwidth (-3dB), $f_b = DC-20 \text{ kHz}$

General Data

Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ Unit weight: 43g / unit

PIN Definition and Dimensions

OFS: Offset Adjustment

GIN: Gain Adjustment

Pin arrangement:

1 (V+): Vcc

2 (V-): -Vcc

3 (OUT): OUTPUT 4 (GND): 0V (GND)

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Fax: +49 (0) 8121-25 74 Email: info@chenyang.de Internet: www.chenyang.de

Tel:

Split Core Hall Effect AC/DC Current Sensor CYHCS-EKGT

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal	Primary Current	Output Voltage	Part number
Current I_r (A)	Measuring Range $I_p(A)$	(Analog) (V)	
50A	0 ~ ± 60A		CYHCS-EKGT-50A
100A	0 ~ ± 120A		CYHCS-EKGT-100A
200A	0 ~ ± 240A	2.5V±2V ±1.0%	CYHCS-EKGT-200A
300A	0 ~ ± 360A	2.5 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CYHCS-EKGT-300A
400A	0 ~ ± 480A		CYHCS-EKGT-400A
500A	0 ~ ± 600A		CYHCS-EKGT-500A

Supply Voltage: V_{cc} =+12VDC \pm 5% **Current Consumption** $I_c < 25 \text{mA}$ Isolation Voltage 2,5kV, 50/60Hz, 1min Output Voltage at I_r , T_A =25°C: $V_{\text{out}} = 2.5 \text{V} \pm 2 \text{V} \pm 1.0\%$ $R_{\rm out}$ < 150 Ω Output Impedance: Load Resistor: $R_{\rm L} > 10 \rm k\Omega$ Accuracy at I_r , $T_A=25^{\circ}$ C (without offset), X < 1.0% Linearity from 0 to I_r , $T_A=25$ °C, E₁ <1.0% FS Electric Offset Voltage, T_A =25°C, $V_{oe} = 2.5V \pm 1.0\%$ Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 20 \text{mV}$ Thermal Drift of Offset Voltage, (-25°C~+85°C) V_{ot} <±0.5mV/°C Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$ Frequency Bandwidth (-3dB), $f_b = DC-20 \text{ kHz}$

General Data

Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

Tel: +49 (0) 8121-25 74 100 Fax: +49 (0) 8121-25 74 101 Email: info@chenyang.de

Internet: www.chenyang.de

OFS: Offset Adjustment

GIN: Gain Adjustment

Cable arrangement:

1 (red): Vcc

2 (yellow): OUTPUT

3 (black): 0V (GND)

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-EDT

This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data/Input

Primary Nominal Current I _r (A)	Primary Current	Output Voltage	Part number
Current $I_r(A)$	Measuring Range $I_p(A)$	(Analog) (V)	
30A	0 ~ ± 45A		CYHCS-EDT-30A
50A	0 ~ ± 75A		CYHCS-EDT-50A
100A	0 ~ ± 150A		CYHCS-EDT-100A
200A	0 ~ ± 300A	2.5V±1.25 ±1.0%	CYHCS-EDT-200A
300A	0 ~ ± 450A		CYHCS-EDT-300A
400A	0 ~ ± 600A		CYHCS-EDT-400A
500A	0 ~ ± 750A		CYHCS-EDT-500A

Supply Voltage: V_{cc} =+5VDC \pm 5% Current Consumption I_c < 20mA Isolation Voltage 2,5kV, 50/60Hz, 1min

Electrical Data/Output

Output Voltage at I_r , T_A =25°C: $V_{\rm out}$ =2.5V±1.25V ±1.0% Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_{\rm L}$ > 2k Ω

Accuracy

Accuracy at I_r , T_A =25°C (without offset), X < 1.0% Linearity from 0 to I_r , T_A =25°C, $E_L < 0.5\%$ FS Electric Offset Voltage, T_A =25°C, $V_{oe} = 2.5 V \pm 0.025 V$ Thermal Drift of Offset Voltage (Ip=0, -40°C~+100°C), V_{ot} <±0.5mV/°C Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$ Frequency Bandwidth (-3dB), $f_b = DC-20 \text{ kHz}$ Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +105^{\circ}\text{C}$

PIN Definition and Dimensions

OFS: Offset Adjustment

GIN: Gain Adjustment

Pin arrangement:

1 (Vcc): +5V

2 (GND): 0V

3 (OUT): OUTPUT

4 (Ref): Vref=2.5V

Window size Φ17.5mm

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect AC/DC Current Sensor CYHCS-ED

This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data/Input

Primary Nominal	Primary Current	Output Voltage	Part number
Current I_r (A)	Measuring Range $I_p(A)$	(Analog) (V)	
30A	0 ~ ± 60A		CYHCS-ED-30A
40A	0 ~ ± 80A		CYHCS-ED-40A
50A	0 ~ ± 100A		CYHCS-ED-50A
100A	0 ~ ± 200A		CYHCS-ED-100A
200A	0 ~ ± 400A	4 ±1.0%	CYHCS-ED-200A
300A	0 ~ ± 600A		CYHCS-ED-300A
400A	0 ~ ± 800A		CYHCS-ED-400A
500A	0 ~ ± 1000A		CYHCS-ED-500A
600A	0 ~ ± 1200A		CYHCS-ED-600A

Supply Voltage: V_{cc} =±15VDC ± 5% Current Consumption I_c < 20mA Isolation Voltage 2,5kV, 50/60Hz, 1min

Electrical Data/Output

Output Voltage at I_r , T_A =25°C: V_{out} =4VDC Output Impedance: $R_{out} < 150\Omega$ Load Resistor: $R_l > 10 k\Omega$

Accuracy

Accuracy at I_r , T_A =25°C (without offset), X < 1.0% Linearity from 0 to I_r , T_A =25°C, E_L <1.0% FS Electric Offset Voltage, T_A =25°C, V_{oe} <±25mV Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 20 \text{mV}$ Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/}^{\circ}\text{C}$ Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$ Frequency Bandwidth (-3dB), $f_b = DC-20 \text{ kHz}$

General Data

Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$

Ambient Storage Temperature, Unit weight:

 $T_{\rm S}$ =-40°C ~ +100°C 60g /unit

PIN Definition and Dimensions

OFS: Offset Adjustment

Pin arrangement:

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Email: info@chenyang.de Internet: www.chenyang.de

D)