Catalogue Open Loop Hall Effect AC/DC Current Sensors Transducers Mounted on Primary Cable ## Copyright© 2020, ChenYang Technologies GmbH & Co. KG All rights reserved. No part of this catalogue may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright holder. #### **Contact Address:** Markt Schwabener Str. 8 D-85464 Finsing Germany Tel: +49 (0) 8121-25 74 100 Fax: +49 (0) 8121-2574 101 Email: info@chenyang.de Internet: www.chenyang.de Tel: Fax: +49 (0) 8121-25 74 100 +49 (0) 8121-25 74 101 # **Contents** | Hall Effect AC/DC Current Sensor CYHCS-EKT (Split Core) | 1 | |----------------------------------------------------------|---| | Hall Effect AC/DC Current Sensor CYHCS-EKC (Split Core) | 3 | | Hall Effect AC/DC Current Sensor CYHCS-EKGT (Split Core) | | | Hall Effect AC/DC Current Sensor CYHCS-EDT | | | Hall Effect AC/DC Current Sensor CYHCS-ED | O | Tel: Fax: +49 (0) 8121-25 74 100 +49 (0) 8121-25 74 101 Email: info@chenyang.de Internet: www.chenyang.de . # Split Core Hall Effect AC/DC Current Sensor CYHCS-EKT This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly. | Product Characteristics | Applications | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability | Photovoltaic equipment Frequency conversion timing equipments Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipments Electric powered locomotive Microcomputer monitoring Electric power network monitoring | ## **Electrical Data** | Primary Nominal | Primary Current | Output Voltage | Part number | |-------------------|--------------------------|----------------|-----------------| | Current I_r (A) | Measuring Range $I_p(A)$ | (V) | | | 10A | 0 ~ ± 20A | | CYHCS-EKT-10A-n | | 20A | 0 ~ ± 40A | 0.51/.41/4.00/ | CYHCS-EKT-20A-n | | 25A | 0 ~ ± 50A | 2.5V±1V ±1.0% | CYHCS-EKT-25A-n | | 50A | 0 ~ ± 80A | | CYHCS-EKT-50A-n | n=2 for power supply: +5VDC; n=3 n=3 for power supply: +12VDC Supply Voltage: Current Consumption Isolation Voltage Output Voltage at I_r , T_A =25°C: Reverse Voltage: Output Impedance: Load Resistor: Accuracy at I_r , T_A =25°C (without offset), Linearity from 0 to I_r , T_A =25°C, Electric Offset Voltage, T_A =25°C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage (Ip=0, -25°C~+85°C), Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB), V_{cc} =+12VDC ±25% or +5VDC $I_{c} < 10 \text{mA}$ 2,5kV, 50/60Hz, 1min $V_{\text{out}} = 2.5 \text{V} \pm 1 \text{V} \pm 1.0\%$ $V_{rev} = 18V > 1hr$ $R_{\rm out}$ < 150 Ω $R_{\rm L}$ > 4.7k Ω X < 1.0% $E_L < 0.5\% FS$ $V_{oe} = 2.5V \pm 25mV$ $V_{om} < \pm 20mV$ V_{ot} <±0.25mV/°C T.C. < ±0.1% /°C $t_r < 7 \mu s$ $f_b = DC-2.2 \text{ kHz}$ #### **General Data** Ambient Operating Temperature, T_A =-40°C ~ +85°C Ambient Storage Temperature, T_S =-55°C ~ +100°C Unit weight: 21g / unit #### **PIN Definition and Dimensions** #### 1) Pin arrangement: 1 (V+): +12V 2 (NC): NC 3 (OUT): OUTPUT 4 (GND): 0V (GND) ## 2) Pin arrangement: 1 (NC): NC 2 (V+): +5VDC 3 (OUT): OUTPUT 4 (GND): 0V (GND) #### Notes: - 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection. - 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver. - 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor). - 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer # Split Core Hall Effect AC/DC Current Sensor CYHCS-EKC This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly. | Product Characteristics | Applications | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability | Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipments Electric powered locomotive Microcomputer monitoring Electric power network monitoring | #### **Electrical Data** | Primary Nominal | Primary Current | Output Voltage | Part number | |-------------------|--------------------------|----------------|----------------| | Current I_r (A) | Measuring Range $I_p(A)$ | (Analog) (V) | | | 30A | 0 ~ ± 60A | | CYHCS-EKC-30A | | 50A | 0 ~ ± 100A | | CYHCS-EKC-50A | | 80A | 0 ~ ± 160A | 4 ±1.0% | CYHCS-EKC-80A | | 100A | 0 ~ ± 200A | 4 ±1.076 | CYHCS-EKC-100A | | 200A | 0 ~ ± 400A | | CYHCS-EKC-200A | | 300A | 0 ~ ± 600A | | CYHCS-EKC-300A | Supply Voltage: V_{cc} =±12V~±15VDC ± 5% **Current Consumption** I_c < 25mA at Vcc=±15VDC Isolation Voltage 2,5kV, 50/60Hz, 1min Output Voltage at I_r , T_A =25°C: $V_{\text{out}} = 4 \text{VDC}$ Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_{\rm L} > 10 {\rm k}\Omega$ Accuracy at I_r , T_A =25°C (without offset), X < 1.0% Linearity from 0 to I_r , $T_A=25$ °C, E_L <1.0% FS Electric Offset Voltage, T_A =25°C, V_{oe} <±25mV Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 25 \text{mV}$ Thermal Drift of Offset Voltage, -25°C~+85°C V_{ot} <±1.0mV/°C Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$ Frequency Bandwidth (-3dB), $f_b = DC-20 \text{ kHz}$ ## **General Data** Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ Unit weight: 43g / unit ## **PIN Definition and Dimensions** OFS: Offset Adjustment GIN: Gain Adjustment Pin arrangement: 1 (V+): Vcc 2 (V-): -Vcc 3 (OUT): OUTPUT 4 (GND): 0V (GND) #### Notes: - 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection. - 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver. - 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor). - 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer Fax: +49 (0) 8121-25 74 Email: info@chenyang.de Internet: www.chenyang.de Tel: # Split Core Hall Effect AC/DC Current Sensor CYHCS-EKGT This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly. | Product Characteristics | Applications | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability | Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring | ## **Electrical Data** | Primary Nominal | Primary Current | Output Voltage | Part number | |-------------------|--------------------------|-------------------------------------------|-----------------| | Current I_r (A) | Measuring Range $I_p(A)$ | (Analog) (V) | | | 50A | 0 ~ ± 60A | | CYHCS-EKGT-50A | | 100A | 0 ~ ± 120A | | CYHCS-EKGT-100A | | 200A | 0 ~ ± 240A | 2.5V±2V ±1.0% | CYHCS-EKGT-200A | | 300A | 0 ~ ± 360A | 2.5 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | CYHCS-EKGT-300A | | 400A | 0 ~ ± 480A | | CYHCS-EKGT-400A | | 500A | 0 ~ ± 600A | | CYHCS-EKGT-500A | Supply Voltage: V_{cc} =+12VDC \pm 5% **Current Consumption** $I_c < 25 \text{mA}$ Isolation Voltage 2,5kV, 50/60Hz, 1min Output Voltage at I_r , T_A =25°C: $V_{\text{out}} = 2.5 \text{V} \pm 2 \text{V} \pm 1.0\%$ $R_{\rm out}$ < 150 Ω Output Impedance: Load Resistor: $R_{\rm L} > 10 \rm k\Omega$ Accuracy at I_r , $T_A=25^{\circ}$ C (without offset), X < 1.0% Linearity from 0 to I_r , $T_A=25$ °C, E₁ <1.0% FS Electric Offset Voltage, T_A =25°C, $V_{oe} = 2.5V \pm 1.0\%$ Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 20 \text{mV}$ Thermal Drift of Offset Voltage, (-25°C~+85°C) V_{ot} <±0.5mV/°C Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$ Frequency Bandwidth (-3dB), $f_b = DC-20 \text{ kHz}$ ## **General Data** Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ #### **PIN Definition and Dimensions** Tel: +49 (0) 8121-25 74 100 Fax: +49 (0) 8121-25 74 101 Email: info@chenyang.de Internet: www.chenyang.de **OFS: Offset Adjustment** GIN: Gain Adjustment #### Cable arrangement: 1 (red): Vcc 2 (yellow): OUTPUT 3 (black): 0V (GND) #### Notes: - 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection. - Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver. - 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor). - 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer # Hall Effect AC/DC Current Sensor CYHCS-EDT This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly. | Product Characteristics | Applications | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability | Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring | ## **Electrical Data/Input** | Primary Nominal Current I _r (A) | Primary Current | Output Voltage | Part number | |--------------------------------------------|--------------------------|-----------------|----------------| | Current $I_r(A)$ | Measuring Range $I_p(A)$ | (Analog) (V) | | | 30A | 0 ~ ± 45A | | CYHCS-EDT-30A | | 50A | 0 ~ ± 75A | | CYHCS-EDT-50A | | 100A | 0 ~ ± 150A | | CYHCS-EDT-100A | | 200A | 0 ~ ± 300A | 2.5V±1.25 ±1.0% | CYHCS-EDT-200A | | 300A | 0 ~ ± 450A | | CYHCS-EDT-300A | | 400A | 0 ~ ± 600A | | CYHCS-EDT-400A | | 500A | 0 ~ ± 750A | | CYHCS-EDT-500A | Supply Voltage: V_{cc} =+5VDC \pm 5% Current Consumption I_c < 20mA Isolation Voltage 2,5kV, 50/60Hz, 1min # **Electrical Data/Output** Output Voltage at I_r , T_A =25°C: $V_{\rm out}$ =2.5V±1.25V ±1.0% Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_{\rm L}$ > 2k Ω # Accuracy Accuracy at I_r , T_A =25°C (without offset), X < 1.0% Linearity from 0 to I_r , T_A =25°C, $E_L < 0.5\%$ FS Electric Offset Voltage, T_A =25°C, $V_{oe} = 2.5 V \pm 0.025 V$ Thermal Drift of Offset Voltage (Ip=0, -40°C~+100°C), V_{ot} <±0.5mV/°C Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$ Frequency Bandwidth (-3dB), $f_b = DC-20 \text{ kHz}$ Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +105^{\circ}\text{C}$ #### **PIN Definition and Dimensions** **OFS: Offset Adjustment** GIN: Gain Adjustment ## Pin arrangement: 1 (Vcc): +5V 2 (GND): 0V 3 (OUT): OUTPUT 4 (Ref): Vref=2.5V Window size Φ17.5mm #### **Notes:** - 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection. - 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver. - 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor). - 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer # Hall Effect AC/DC Current Sensor CYHCS-ED This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. It can be mounted on the primary cable directly. | Product Characteristics | Applications | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability | Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring | ## **Electrical Data/Input** | Primary Nominal | Primary Current | Output Voltage | Part number | |-------------------|--------------------------|----------------|---------------| | Current I_r (A) | Measuring Range $I_p(A)$ | (Analog) (V) | | | 30A | 0 ~ ± 60A | | CYHCS-ED-30A | | 40A | 0 ~ ± 80A | | CYHCS-ED-40A | | 50A | 0 ~ ± 100A | | CYHCS-ED-50A | | 100A | 0 ~ ± 200A | | CYHCS-ED-100A | | 200A | 0 ~ ± 400A | 4 ±1.0% | CYHCS-ED-200A | | 300A | 0 ~ ± 600A | | CYHCS-ED-300A | | 400A | 0 ~ ± 800A | | CYHCS-ED-400A | | 500A | 0 ~ ± 1000A | | CYHCS-ED-500A | | 600A | 0 ~ ± 1200A | | CYHCS-ED-600A | Supply Voltage: V_{cc} =±15VDC ± 5% Current Consumption I_c < 20mA Isolation Voltage 2,5kV, 50/60Hz, 1min ## **Electrical Data/Output** Output Voltage at I_r , T_A =25°C: V_{out} =4VDC Output Impedance: $R_{out} < 150\Omega$ Load Resistor: $R_l > 10 k\Omega$ ## Accuracy Accuracy at I_r , T_A =25°C (without offset), X < 1.0% Linearity from 0 to I_r , T_A =25°C, E_L <1.0% FS Electric Offset Voltage, T_A =25°C, V_{oe} <±25mV Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 20 \text{mV}$ Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/}^{\circ}\text{C}$ Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$ Frequency Bandwidth (-3dB), $f_b = DC-20 \text{ kHz}$ ## **General Data** Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, Unit weight: $T_{\rm S}$ =-40°C ~ +100°C 60g /unit #### **PIN Definition and Dimensions** OFS: Offset Adjustment #### Pin arrangement: #### Notes: - 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection. - 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver. - 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor). - 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer Email: info@chenyang.de Internet: www.chenyang.de D)