

AC/DC Split Core Hall Current Sensor CYHCS-RC2S

This Hall Effect current sensor can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications			
Excellent accuracy Very good linearity	Frequency conversion timing equipmentVarious power supply			
Light in weight	Various power supplyUninterruptible power supplies (UPS)			
Less power consumption	Electric welding machines			
Window structureElectrically isolating the output of the	Numerical controlled machine toolsElectrolyzing and electroplating equipment			
transducer from the current carrying conductor	Electric powered locomotive			
No insertion loss	Microcomputer monitoring			
Current overload capability	Electric power network monitoring			

Electrical Data

Primary Nominal Current I_r (A)	Primary Current Measuring Range I _p (A) at Vcc=12V	Output Voltage (analog) (V)	Part number		
30	± 60		CYHCS-RC2S-30A-XC		
50	± 100		CYHCS-RC2S-50A-XC		
100	± 200		CYHCS-RC2S-100A-XC		
200	± 400	5VDC±2V	CYHCS-RC2S-200A-XC		
300	± 600	5VDC±2V	CYHCS-RC2S-300A-XC		
400	± 800		CYHCS-RC2S-400A-XC		
500	± 900		CYHCS-RC2S-500A-XC		
600	± 900		CYHCS-RC2S-600A-XC		

Supply Voltage: X=3, V_{cc} = +12VDC± 5%, ; X=4, V_{cc} =+15VDC± 5%; X=5, V_{cc} =+24VDC± 5%, (Connector: Molex connector C=M; Phoenix Connector: C=P)

Current Consumption I_c < 25mA RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min, V_{is} < 10mA Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_{\rm l} > 10 \text{k}\Omega$ X <1.0% Accuracy at I_r , T_A =25°C (without offset), Linearity from 0 to I_r , $T_A=25$ °C, E_L <1.0% FS Electric Offset Voltage, $T_A=25^{\circ}$ C, $V_{oe} = 5.0 \text{VDC} \pm 1.0\%$ Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 15 \text{mV}$ V_{ot} <±1.0mV/°C Thermal Drift of Offset Voltage, Thermal Drift (-10°C to 50°C), $T.C. < \pm 0.1\% / ^{\circ}C$ Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$

General Data

Ambient Operating Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

 $f_b = 0-20 \text{ kHz}$

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121- 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

50k - 100k hours

Frequency Bandwidth (-3dB),

Mean Time Between Failures (MTBF):

Relation between Input Current and Output Voltage

Taking the sensor CYHCS-RC2S-100A-3 as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1. Relation between the input current and output voltage

Input current (A)	-200	-150	-100	-50	0	50	100	150	200
Output voltage (V)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0

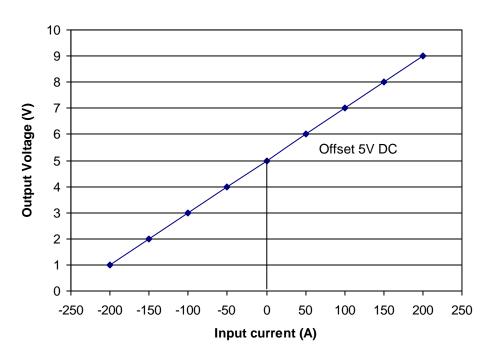


Fig. 1 Relation between the input current (DC) and output voltage (DC)

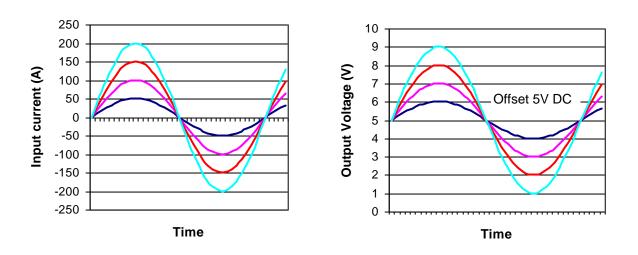
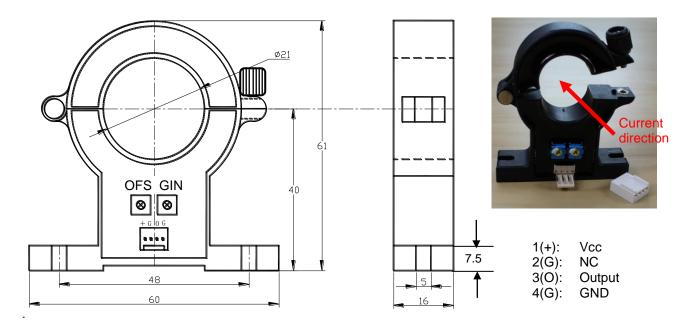
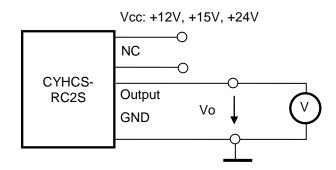



Fig. 2 Relation between the input current (AC) and output voltage (AC)


PIN Definition and Dimensions

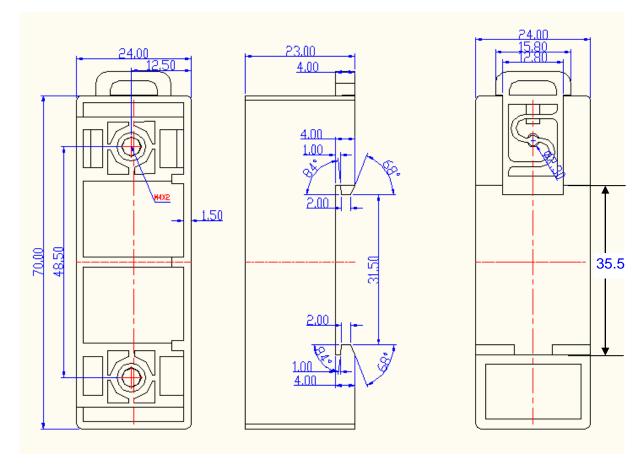
OFS: Offset Adjustment

GIN: Gain Adjustment

Connection

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer


http://www.cy-sensors.com

DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom und the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom und the middle of hole is 54.8mm)