

Open Loop Hall AC/DC Current Sensor CYHCS-RC4

This Hall Effect current sensor can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

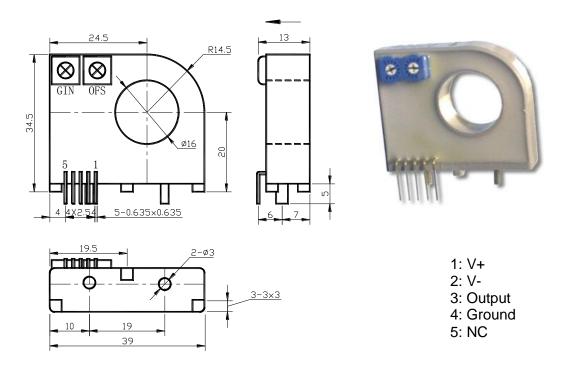
Product Characteristics	Applications
Excellent accuracy	Frequency conversion timing equipments
Very good linearity	Various power supply
Small size	Uninterruptible power supplies (UPS)
Light in weight	Electric welding machines
Less power consumption	Transformer substation
Window structure	Numerical controlled machine tools
Electrically isolating the output of the transducer from the current carrying conductor	Electrolyzing and electroplating equipments
	Electric powered locomotive
No insertion loss	Microcomputer monitoring
Current overload capability	Electric power network monitoring

Electrical Data/Input

Primary Nominal Current <i>I_r</i> (A)	Primary Current Measuring Range $I_p(A)$ at Vcc=15V	Aperture Diameter (mm)	Part number
50	± 150	16	CYHCS-RC4-050A
100	± 200	16	CYHCS-RC4-100A
150	± 300	16	CYHCS-RC4-150A
200	± 400	16	CYHCS-RC4-200A
250	± 500	16	CYHCS-RC4-250A
300	± 450	16	CYHCS-RC4-300A

Technical Data:

Supply Voltage	$V_{cc} = \pm 15 \text{V} \pm 5\%$,
Current Consumption	I_c < 20mA
RMS Voltage for 2.5kV AC isolation test, 50/60Hz, 1min,	V_{is} <10mA
Isolation Resistance at 500V DC	R_{is} >500 M Ω
Output Voltage (analog) at I_r , T_A =25°C:	$V_{\text{out}} = 4V$
Output Impedance:	$R_{\rm out}$ < 150 Ω
Load Resistor:	$R_{\rm L}$ > 10k Ω
Accuracy at I_r , T_A =25°C (without offset),	<i>X</i> <1.0%
Linearity from 0 to I_r , $T_A=25^{\circ}$ C,	<i>E</i> _∠ <1.0% FS
Electric Offset Voltage, T_A =25°C,	V_{oe} < 20 mV
Magnetic Offset Voltage $(I_r \rightarrow 0)$	V_{om} < ± 15 mV
Thermal Drift of Offset Voltage,	V_{ot} <±1.0mV/°C


Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121- 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB), Ambient Operating Temperature, Ambient Storage Temperature, T.C. $< \pm 0.1\%$ /°C $t_r < 7\mu$ s $f_b = 50 \text{ kHz}$ $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer