

Split Core Hall Current Sensor CYHCT-EKCV

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor 	Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive		
 No insertion loss Current overload capability 	Microcomputer monitoringElectric power network monitoring		

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Voltage (V)	Aperture Diameter (mm)	Part number
30A	0 ~ ± 30A			CYHCT-EKCV-U/B30A-xn
50A	0 ~ ± 50A	x=0: 0-4V ±1.0%		CYHCT-EKCV-U/B50A-xn
80A	0 ~ ± 80A	x=3: 0-5V ±1.0%	10	CYHCT-EKCV-U/B80A-xn
100A	0 ~ ± 100A	x=8: 0-10V ±1.0%	12	CYHCT-EKCV-U/B100A-xn
200A	0 ~ ± 200A			CYHCT-EKCV-U/B200A-xn
300A	0 ~ ± 300A			CYHCT-EKCV-U/B300A-xn

(n=2, *Vcc*= +12VDC; n=3, *Vcc* =+15VDC; n=4, *Vcc* =+24VDC, U: unidirectional input current; B: bidirectional input current, please give U or B in Part number)

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121-2574101

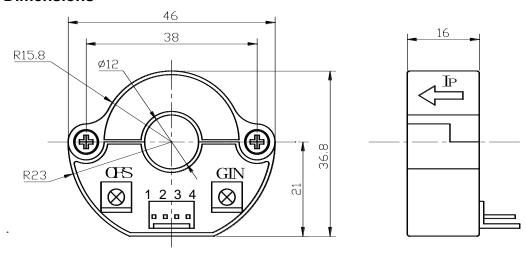
Email: info@cy-sensors.com http://www.cy-sensors.com

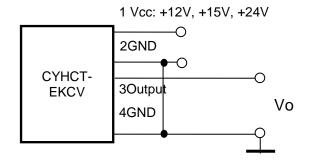
Supply Voltage V_{cc} = +12V, +15V, +24VDC \pm 5% Output Voltage at I_r , T_A =25°C: V_{out} =0- 4V, 0-5V, 0-10VDC

Current Consumption $I_c < 25 \text{mA}$ Galvanic isolation, 50/60Hz, 1min: 3kV rms Output Impedance: $R_{\text{out}} < 150 \Omega$ Load resistance: 10k Ω

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C, $X < \pm 1.0\%$ FS Linearity from 0 to I_r , T_A =25°C, $E_L < \pm 0.5\%$ FS Electric Offset Voltage, T_A =25°C, $V_{oe} < 50 \text{mV}$ Magnetic Offset Voltage ($I_r \rightarrow 0$) $V_{om} < \pm 20 \text{mV}$ Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0 \text{mV/°C}$ Response Time at 90% of I_P (f=1k Hz) $t_r < 1 \text{ms}$


Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$


Case Material: PBT

General Data

Operating Temperature, Storage Temperature, Unit weight: $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ 35g/unit

Dimensions

Pin Arrangement

1: Vcc 2

2: Ground (GND)

3: Output

4: Ground (GND)

GIN: gain adjustment

OFS: offset adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer.

Email: info@cy-sensors.com http://www.cy-sensors.com