

Open Loop Hall Current Sensor CYHCT-FAC

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications		
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring 		

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Current (mA)	Window Size (mm)	Part number
400	0~±400			CYHCT-FAC-U/B400A-n
500	0~±500			CYHCT-FAC-U/B500A-n
600	0~±600			CYHCT-FAC-U/B600A-n
800	0~±800	4-20 ±1.0%	51x13	CYHCT-FAC-U/B800A-n
1000	0~±1000			CYHCT-FAC-U/B1000A-n
1500	0~±1500			CYHCT-FAC-U/B1500A-n
2000	0~±2000			CYHCT-FAC-U/B2000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc=+12VDC ±5%; n=4, Vcc=+15VDC ±5%; n=5, Vcc=+24VDC±5%)

Supply Voltage V_{cc} = +12V, +15V, +24VDC \pm 5%

Output current: 4-20mADC

Current Consumption $I_c < 25\text{mA} + \text{Output current}$

Galvanic isolation, 50/60Hz, 1min: 3kV rms Isolation resistance @ 500 VDC $> 500 \text{ M}\Omega$

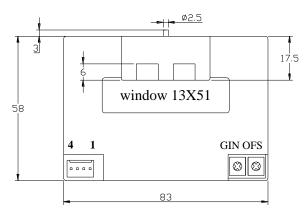
Accuracy and Dynamic performance data

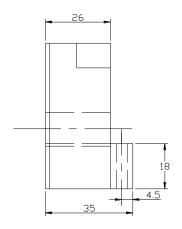
Accuracy at I_r , T_A =25°C, $X < \pm 1.0\%$ FS Linearity from 0 to I_r , T_A =25°C, $E_L < \pm 0.5\%$ FS

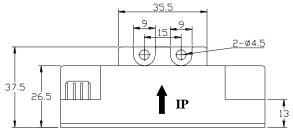
Electric Offset current, T_A =25°C, 4mA DC or 12mA DC Thermal Drift of Offset Current, $<\pm0.005$ mA/°C

Response Time at 90% of I_P $t_r < 10 \mu s$ Load resistance: 80-450 Ω

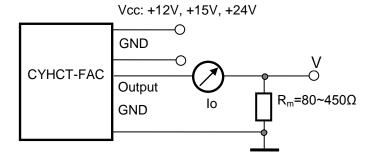
Case Material: PBT, heat resistant 125°C


Frequency Bandwidth (-3dB), f_b = DC - 20 kHz


General Data


Ambient Operating Temperature, Ambient Storage Temperature, Unit weight:

$$T_A = -25$$
°C ~ +85°C
 $T_S = -40$ °C ~ +100°C
300g/unit


Dimensions

Pin Arrangement

- 1: Vcc
- 2: Ground
- 3: Output
- 4: Ground

GIN: gain adjustment OFS: offset adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer