

Open Loop Hall Current Sensor CYHCT-FC

This Hall Effect current sensor is based on open loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring 	

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Current (mA)	Window Size (mm)	Part number
200	0~±200			CYHCT-FC-U/B200A-n
400	0~±400			CYHCT-FC-U/B400A-n
500	0~±500			CYHCT-FC-U/B500A-n
600	0~±600	4-20 ±1.0%	41x14	CYHCT-FC-U/B600A-n
800	0~±800			CYHCT-FC-U/B800A-n
1000	0~±1000]		CYHCT-FC-U/B1000A-n
2000	0~±2000			CYHCT-FC-U/B2000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc=+12VDC ±5%; n=4, Vcc=+15VDC ±5%; n=5, Vcc=+24VDC±5%)

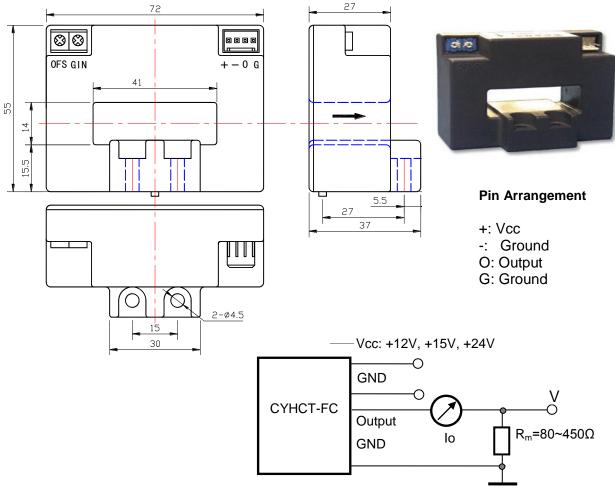
Supply Voltage Output current: Current Consumption Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC V_{cc} = +12V, +15V, +24VDC ± 5% 4-20mADC I_c < 25mA + Output current 3kV rms > 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C, Linearity from 0 to I_r , T_A =25°C, Electric Offset current, T_A =25°C, Thermal Drift of Offset Current, Response Time at 90% of I_P Load resistance: Case Material:

Frequency Bandwidth (-3dB),

Markt Schwabener Str. 8 D-85464 Finsing Germany $X \le \pm 1.0\%$ FS $E_L \le \pm 0.5\%$ FS 4mA DC or 12mA DC $\le \pm 0.005$ mA/°C $t_r < 1$ ms 80-450 Ω PBT, heat resistant 125°C flame retardant $f_b =$ DC - 20 kHz


Tel.: +49 (0)8121 – 2574100 Fax: +49 (0)8121 – 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com Version 2 Released in May 2016 Dr.-Ing. habil. Jigou Liu

General Data

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight: $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ 217g/unit

Dimensions

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer