

Hall Effect DC Current Sensor CYHCT-HBC

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
Excellent accuracy	Photovoltaic equipment	
 Very good linearity 	 Frequency conversion timing equipment 	
 easy mounting 	 Various power supply 	
 Less power consumption 	 Uninterruptible power supplies (UPS) 	
Window structure	Electric welding machines	
 Electrically isolating the output of the 	 Transformer substation 	
transducer from the current carrying	Numerical controlled machine tools	
conductor	Electric powered locomotive	
No insertion loss	Microcomputer monitoring	
Current overload capability	Electric power network monitoring	

Electrical Data

Primary Nominal	Measuring	DC Output	Window Size	Part number
DC Current I_r (A)	Range (A)	Current (mA)	(mm)	
2000	0~±2000			CYHCT-HBC-U/B2000A-n
3000	0~±3000			CYHCT-HBC-U/B3000A-n
4000	0~±4000			CYHCT-HBC-U/B4000A-n
5000	0~±5000	4-20 ±1.0%	140 x 50	CYHCT-HBC-U/B5000A-n
6000	0~±6000			CYHCT-HBC-U/B6000A-n
8000	0~±8000			CYHCT-HBC-U/B8000A-n
10000	0~±10000			CYHCT-HBC-U/B10000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

Supply Voltage V_{cc} = +12V, +15V, +24VDC ± 5%

Output current: 4-20mADC

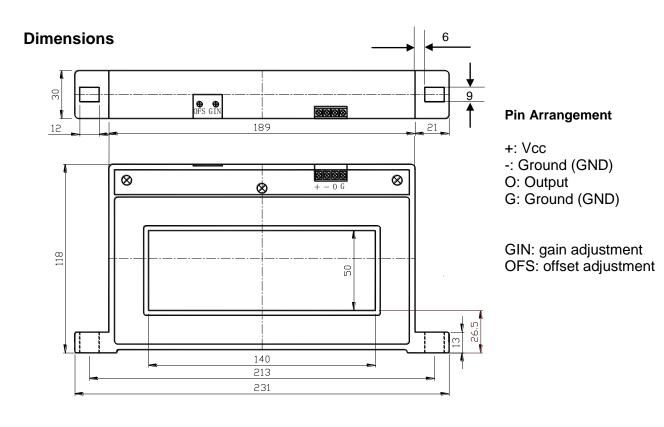
Current Consumption I_c < 25mA + Output current

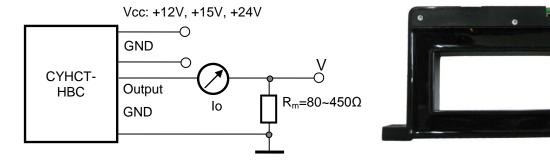
Galvanic isolation, 50/60Hz, 1min: 3kV rms Isolation resistance @ 500 VDC $> 500 M\Omega$

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C, *X* <±1.0% FS Linearity from 0 to I_r , $T_A=25$ °C, $E_{l} < \pm 0.5\% FS$ Electric Offset current, T_A =25°C, 4mA DC or 12mA DC Thermal Drift of Offset Current, <±0.005mA/°C

Response Time at 90% of I_P $t_r < 1 \text{ms}$


Load resistance: $80-450\Omega$


Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$ Case Material: PBT

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

$$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$$

 $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer