

Split Core Hall Current Sensor CYHCT-K104C

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure with split core Electrically isolating the output of the 	Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation	
transducer from the current carrying conductor No insertion loss Current overload capability	 Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring 	

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Current (mA)	Window Size (mm)	Part number
500	0~±500			CYHCT-K104C-U/B500A-n
1000	0~±1000			CYHCT-K104C-U/B1000A-n
1500	0~±1500			CYHCT-K104C-U/B1500A-n
2000	0~±2000	4-20 ±1.0%	104 x 36	CYHCT-K104C-U/B2000A-n
3000	0~±3000			CYHCT-K104C-U/B3000A-n
4000	0~±4000			CYHCT-K104C-U/B4000A-n
5000	0~±5000			CYHCT-K104C-U/B5000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc=+15VDC ±5%; n=5, Vcc=+24VDC±5%)

Supply Voltage V_{cc} = +12V, +15V, +24VDC \pm 5%

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

Output current: 4-20mADC

Current Consumption $I_c < 25\text{mA} + \text{Output current}$

Galvanic isolation, 50/60Hz, 1min: 3kV rms Isolation resistance @ 500 VDC $> 500 \text{ M}\Omega$

Accuracy and Dynamic performance data

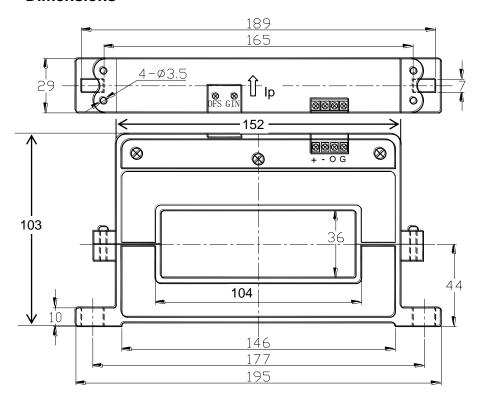
Accuracy at I_r , T_A =25°C, $X < \pm 1.0\%$ FS Linearity from 0 to I_r , T_A =25°C, $E_L < \pm 0.5\%$ FS

Electric Offset current, T_A =25°C, 4mA DC or 12mA DC

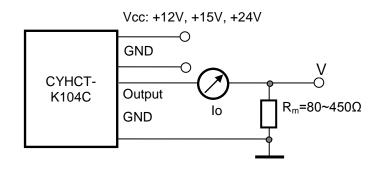
Thermal Drift of Offset Current, $<\pm 0.005 \text{mA}/^{\circ}\text{C}$ Response Time at 90% of I_P $t_r < 1 \text{ms}$

Load resistance: $l_r < l_r <$

Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$


Case Material: PBT

General Data


Ambient Operating Temperature, Ambient Storage Temperature,

$$T_A$$
 = -25°C ~ +85°C
 T_S =-40°C ~ +100°C

Dimensions

Pin Arrangement

1(+): Vcc

2(-): Ground (GND)

3(O): Output

4(G): Ground (GND)

GIN: gain adjustment OFS: offset adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

http://www.cy-sensors.com