

Split Core Hall Current Sensor CYHCT-K104V

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring 	

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Voltage (V)	Window Size (mm)	Part number
500	0~±500	x=0: 0-4V ±1.0% x=3: 0-5V ±1.0% x=8: 0-10V ±1.0%		CYHCT-K104V-U/B500A-xn
1000	0~±1000			CYHCT-K104V-U/B1000A-xn
1500	0~±1500			CYHCT-K104V-U/B1500A-xn
2000	0~±2000		104 x 36	CYHCT-K104V-U/B2000A-xn
3000	0~±3000			CYHCT-K104V-U/B3000A-xn
4000	0~±4000			CYHCT-K104V-U/B4000A-xn
5000	0~±5000			CYHCT-K104V-U/B5000A-xn

(n=2, *Vcc*= +12VDC; n=3, *Vcc* =+15VDC; n=4, *Vcc* =+24VDC, U: unidirectional input current; B: bidirectional input current, please give U or B in Part number)

Supply Voltage $V_{cc} = +12V, +15V, +24VDC \pm 5\%$

Output Voltage at I_r , T_A =25°C: V_{out} =0- 4V, 0-5V, 0-10VDC Current Consumption I_c < 25mA

Galvanic isolation, 50/60Hz, 1min: 3kV rms

Output Impedance: $R_{\text{out}} < 150\Omega$ Load resistance: $10k\Omega$

Accuracy and Dynamic performance data

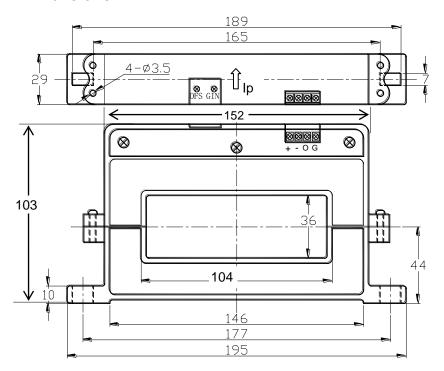
 $\begin{array}{lll} \mbox{Accuracy at I_r, T_A=$25°C$,} & X < \pm 1.0\% \ \mbox{FS} \\ \mbox{Linearity from 0 to I_r, T_A=$25°C$,} & E_L < \pm 0.5\% \ \mbox{FS} \\ \mbox{Electric Offset Voltage, T_A=$25°C$,} & V_{oe} < 50mV \\ \mbox{Magnetic Offset Voltage (I_r\rightarrow 0)$} & V_{om} < \pm 20mV \\ \mbox{Thermal Drift of Offset Voltage,} & V_{ot} < \pm 1.0mV/°C \\ \end{array}$

Response Time at 90% of I_P (f=1k Hz) t_r < 1ms Frequency Bandwidth (-3dB), f_b = DC - 20 kHz

Case Material: PBT

 Markt Schwabener Str. 8
 Tel.: +49 (0)8121 – 2574100

 D-85464 Finsing
 Fax: +49 (0)8121 – 2574101


 Germany
 Email: info@cy-sensors.com http://www.cy-sensors.com

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

$$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$$

 $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Dimensions

CYHCT-K104V GND Vo

Pin Arrangement

1(+): Vcc

2(-): Ground (GND)

3(O): Output

4(G): Ground (GND)

GIN: gain adjustment OFS: offset adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

http://www.cy-sensors.com