

# Hall Effect DC Current Sensor CYHCT-KCC

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

| Product Characteristics                                                                                                                                                                                                                                                                                        | Applications                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Excellent accuracy</li> <li>Very good linearity</li> <li>Less power consumption</li> <li>Window structure with split core</li> <li>Electrically isolating the output of the transducer from the current carrying conductor</li> <li>No insertion loss</li> <li>Current overload capability</li> </ul> | <ul> <li>Photovoltaic equipment</li> <li>Frequency conversion timing equipment</li> <li>Various power supply</li> <li>Uninterruptible power supplies (UPS)</li> <li>Electric welding machines</li> <li>Numerical controlled machine tools</li> <li>Electrolyzing and electroplating equipment</li> <li>Electric powered locomotive</li> <li>Microcomputer monitoring</li> <li>Electric power network monitoring</li> </ul> |

## **Electrical Data/Input**

| Primary Nominal DC Current I <sub>r</sub> (A) | Primary Current Measuring Range I <sub>p</sub> (A) | Output current<br>(mA) | Part number           |
|-----------------------------------------------|----------------------------------------------------|------------------------|-----------------------|
| 1000A                                         | 0 ~ ± 1000A                                        |                        | CYHCT-KCC-U/B1000A-n  |
| 2000A                                         | 0 ~ ± 2000A                                        |                        | CYHCT-KCC-U/B2000A-n  |
| 3000A                                         | 0 ~ ± 3000A                                        |                        | CYHCT-KCC-U/B3000A-n  |
| 4000A                                         | 0 ~ ± 4000A                                        | 4-20mA                 | CYHCT-KCC-U/B4000A-n  |
| 5000A                                         | 0 ~ ± 5000A                                        | 4-2011A                | CYHCT-KCC-U/B5000A-n  |
| 6000A                                         | 0 ~ ± 6000A                                        |                        | CYHCT-KCC-U/B6000A-n  |
| 8000A                                         | 0 ~ ± 8000A                                        |                        | CYHCT-KCC-U/B8000A-n  |
| 10000A                                        | 0 ~ ± 10000A                                       |                        | CYHCT-KCC-U/B10000A-n |

(n=2, Vcc= +12VDC; n=3, Vcc =+15VDC; n=4, Vcc =+24VDC, n=5, Vcc =±12VDC, n=6, Vcc =±15VDC, n=7, Vcc =±24VDC, U: unidirectional, B: bidirectional)

Supply Voltage:  $V_{cc}$ =+12V, +15V, +24V $\pm$  5% Current Consumption  $I_c$  < 50mA + Output current Isolation Voltage 6kV, 50/60Hz, 1min

#### **Accuracy and Dynamic performance data**

Accuracy at  $I_r$ ,  $T_A$ =25°C (without offset), <a href="mailto:climbra"><1.0%</a>
Linearity from 0 to  $I_r$ ,  $T_A$ =25°C, <a href="mailto:Electric Offset Current"> $E_L$  <1.0% FS
Electric Offset Current,  $T_A$ =25°C, <a href="mailto:decoration-shows-area">4mA DC or 12mA DC or

#### **General Data**

Ambient Operating Temperature,  $T_A$  =-25°C ~ +85°C Ambient Storage Temperature,  $T_S$  =-40°C ~ +100°C

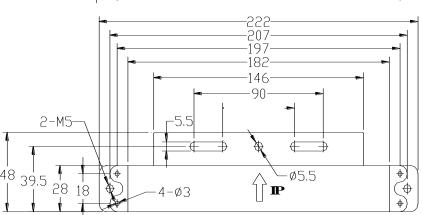
Tel.: +49 (0)8121 - 2574100

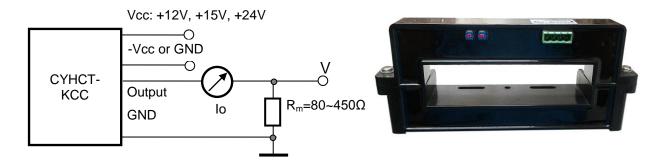
Fax: +49 (0)8121- 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

#### **PIN Definition and Dimensions**




GIN: Gain Adjustment


# 188 140 OFS GIN 1 2 3 4 15 8

### Pin arrangement:

1(V+): Vcc

2(V-): -Vcc or GND 3(OUT): OUTPUT 4(GND): 0V (GND)





#### Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer