

Catalogue

Open Loop Hall Effect DC Current Sensors Transducers with Rectangle Windows

Copyright© 2020, ChenYang Technologies GmbH & Co. KG

All rights reserved. No part of this catalogue may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright holder.

Contact Address:

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel:	+49 (0) 8121-25 74 100
Fax:	+49 (0) 8121-2574 101
Email:	info@chenyang.de
Internet:	www.chenyang.de

Contents

Hall Effect DC Current Sensor CYHCT-BTV	1
Hall Effect DC Current Sensor CYHCT-BTC	3
Hall Effect DC Current Sensor CYHCT-FV	6
Hall Effect DC Current Sensor CYHCT-FC	8
Hall Effect DC Current Sensor CYHCT-FAV	10
Hall Effect DC Current Sensor CYHCT-FAC	12
Hall Effect DC Current Sensor CYHCT-KV (Split Core)	14
Hall Effect DC Current Sensor CYHCT-KC (Split Core)	16
Hall Effect DC Current Sensor CYHCT-KF2V (Split Core)	18
Hall Effect DC Current Sensor CYHCT-KF2C (Split Core)	20
Hall Effect DC Current Sensor CYHCT-K104V (Split Core)	22
Hall Effect DC Current Sensor CYHCT-K104C (Split Core)	24
Hall Effect DC Current Sensor CYHCT-C5 (Split Core)	26
Hall Effect DC Current Sensor CYHCT-KCV (Split Core)	30
Hall Effect DC Current Sensor CYHCT-KCC (Split Core)	32
Hall Effect DC Current Sensor CYHCT-HBV	34
Hall Effect DC Current Sensor CYHCT-HBC	36
Hall Effect DC Current Sensor CYHCT-K210V	38
Hall Effect DC Current Sensor CYHCT-K210C	40

Hall Effect DC Current Sensor CYHCT-BTV

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic Equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power petwork monitoring 	

Electrical Data

Primary Nominal Current I _r (A)	Measuring Range (A)	Output voltage	Aperture measures (mm)	Part number
50	0 ~ ±50			CYHCT-BTV-U/B050A-xn
100	0 ~ ± 100			CYHCT-BTV-U/B100A-xn
200	0 ~ ± 200	$X=0: 0.4V \pm 1.0\%$		CYHCT-BTV-U/B200A-xn
300	0 ~ ± 300	$x=3: 0-5V \pm 1.0\%$	20.5x10.5	CYHCT-BTV-U/B300A-xn
400	0 ~ ±400	X=0.0-10V ±1.076		CYHCT-BTV-U/B400A-xn
500	0 ~ ±500			CYHCT-BTV-U/B500A-xn
600	0 ~ ±600			CYHCT-BTV-U/B600A-xn

(n=2, Vcc= +12VDC; n=3, Vcc =+15VDC; n=4, Vcc =+24VDC, U: unidirectional, B: bidirectional)

Supply Voltage: Output Voltage at I_r , T_A =25°C: Current Consumption Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC V_{cc}=+12V, +15V, +24V± 5% V_{out}=0- 4V, 0-5V, 0-10VDC I_c < 25mA 2.5kV > 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C, Linearity from 0 to I_r , T_A =25°C, Zero Output Voltage, T_A =25°C, Hysteresis offset voltage: Thermal Drift of Offset Voltage, Frequency bandwidth (- 3 dB): Response Time at 90% of I_P (f=1k Hz) <1.0% FS <0.5% FS <50mV <±25mV <±1.0mV/°C DC-20kHz < 1ms

General Data

Ambient Operating Temperature, Ambient Storage Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-BTC

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

equipment
nversion timing equipment r supply e power supplies (UPS) ng machines substation ntrolled machine tools red locomotive er monitoring

Electrical Data

Primary Nominal Current <i>I</i> _r (A)	Measuring Range (A)	Output Current (mA)	Window size (mm)	Part number
50	0 ~ ±50			CYHCT-BTC-U/B050A-n
100	0 ~ ± 100			CYHCT-BTC-U/B100A-n
200	0 ~ ± 200			CYHCT-BTC-U/B200A-n
300	0 ~ ± 300	4-20 ±1.0%	20.5x10.5	CYHCT-BTC-U/B300A-n
400	0 ~ ±400			CYHCT-BTC-U/B400A-n
500	0 ~ ±500			CYHCT-BTC-U/B500A-n
600	0 ~ ±600			CYHCT-BTC-U/B600A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc=+12VDC ±5%; n=4, Vcc=+15VDC ±5%; n=5, Vcc=+24VDC±5%)

Supply Voltage Output current: Current Consumption Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC V_{cc} = +12V, +15V, +24VDC ± 5% 4-20mADC I_c < 25mA + Output current 3kV rms > 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C, Linearity from 0 to I_r , T_A =25°C, Electric Offset current, T_A =25°C, Thermal Drift of Offset Current, Response Time at 90% of I_P Load resistance: Frequency Bandwidth (-3dB), $X \le \pm 1.0\%$ FS $E_{L} \le \pm 0.5\%$ FS 4mA DC or 12mA DC $\le \pm 0.005$ mA/°C $t_{r} < 1$ ms 80-450Ω $f_{b} = DC - 20$ kHz

General Data

Ambient Operating Temperature, Ambient Storage Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

Markt Schwabener Str. 8 D-85464 Finsing Germany

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-FV

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I</i> _r (A)	Measuring Range (A)	DC Output Voltage (V)	Window size (mm)	Part number
200	0~±200			CYHCT-FV-U/B200A-xn
400	0~±400	x 0: 0 4\/ . 4 00/		CYHCT-FV-U/B400A-xn
500	0~±500	$X=0: 0-4V \pm 1.0\%$		CYHCT-FV-U/B500A-xn
600	0~±600	$x=3.0-3V \pm 1.0\%$ $x=8.0.10V \pm 1.0\%$	41x14	CYHCT-FV-U/B600A-xn
800	0~±800	X=0. 0-10V ±1.0%		CYHCT-FV-U/B800A-xn
1000	0~±1000			CYHCT-FV-U/B1000A-xn
2000	0~±2000			CYHCT-FV-U/B2000A-xn

(n=2, Vcc= +12VDC±5%;; n=3, Vcc =+15VDC±5%;; n=4, Vcc =+24VDC±5%;,

U: unidirectional input current; B: bidirectional input current, please give U or B in Part number)

Supply Voltage Output Voltage at I_n , T_A =25°C: Current Consumption Galvanic isolation, 50/60Hz, 1min: Output Impedance: Load resistance: V_{cc} = +12V, +15V, +24VDC ± 5% V_{out} =0- 4V, 0-5V, 0-10VDC I_c < 25mA 3kV rms R_{out} < 150Ω 10kΩ

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C, Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Response Time at 90% of I_P (f=1k Hz) Case Material:

Frequency Bandwidth (-3dB),

Markt Schwabener Str. 8 D-85464 Finsing Germany $X \le \pm 1.0\%$ FS $E_L \le \pm 0.5\%$ FS $V_{oe} \le 50$ mV $V_{om} \le \pm 20$ mV $V_{ot} \le \pm 1.0$ mV/°C $t_r \le 1$ ms PBT, heat resistant 100°C flame retardant $f_b = DC - 20$ kHz

General Data

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight: $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ 217g/unit

Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-FC

This Hall Effect current sensor is based on open loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I</i> _r (A)	Measuring Range (A)	DC Output Current (mA)	Window Size (mm)	Part number
200	0~±200			CYHCT-FC-U/B200A-n
400	0~±400			CYHCT-FC-U/B400A-n
500	0~±500			CYHCT-FC-U/B500A-n
600	0~±600	4-20 ±1.0%	41x14	CYHCT-FC-U/B600A-n
800	0~±800			CYHCT-FC-U/B800A-n
1000	0~±1000			CYHCT-FC-U/B1000A-n
2000	0~±2000			CYHCT-FC-U/B2000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc=+12VDC ±5%; n=4, Vcc=+15VDC ±5%; n=5, Vcc=+24VDC±5%)

Supply Voltage Output current: Current Consumption Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC V_{cc} = +12V, +15V, +24VDC ± 5% 4-20mADC I_c < 25mA + Output current 3kV rms > 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_n , T_A =25°C, Linearity from 0 to I_n , T_A =25°C, Electric Offset current, T_A =25°C, Thermal Drift of Offset Current, Response Time at 90% of I_P Load resistance: Case Material:

Frequency Bandwidth (-3dB),

 $X \le \pm 1.0\%$ FS $E_L \le \pm 0.5\%$ FS 4mA DC or 12mA DC $\le \pm 0.005$ mA/°C $t_r < 1$ ms 80-450Ω PBT, heat resistant 125°C flame retardant $f_b =$ DC - 20 kHz

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

217g/unit

General Data

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight:

Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-FAV

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Voltage (V)	Window Size (mm)	Part number
400	0~±400			CYHCT-FAV-U/B400A-xn
500	0~±500	x 0:0 4\/ .4 00/		CYHCT-FAV-U/B500A-xn
600	0~±600	$X=0: 0-4V \pm 1.0\%$		CYHCT-FAV-U/B600A-xn
800	0~±800	$x=3.0-5V \pm 1.0\%$ $x=9:0.10V \pm 1.0\%$	51x13	CYHCT-FAV-U/B800A-xn
1000	0~±1000	X=0. 0-10V ±1.0%		CYHCT-FAV-U/B1000A-xn
1500	0~±1500			CYHCT-FAV-U/B1500A-xn
2000	0~±2000			CYHCT-FAV-U/B2000A-xn

(n=2, *Vcc*= +12VDC; n=3, *Vcc*=+15VDC; n=4, *Vcc*=+24VDC U: unidirectional input current; B: bidirectional input current, please give U or B in Part number)

Supply Voltage Output Voltage at I_r , T_A =25°C: Current Consumption Galvanic isolation, 50/60Hz, 1min: Output Impedance: Load resistance:

 V_{cc} = +12V, +15V, +24VDC ± 5% V_{out} =0- 4V, 0-5V, 0-10VDC I_c < 25mA 3kV rms R_{out} < 150Ω 10kΩ

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C, Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB), Case Material:

> Markt Schwabener Str. 8 D-85464 Finsing Germany

 $X < \pm 1.0\%$ FS $E_L < \pm 0.5\%$ FS $V_{oe} < 50mV$ $V_{om} < \pm 20mV$ $V_{ot} < \pm 1.0mV/°C$ $t_r < 1ms$ $f_b = DC - 20$ kHz PBT

General Data

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight:

Dimensions

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ 300g/unit

Pin Arrangement

1: Vcc

2: Ground

3: Output

4: Ground

GIN: gain adjustment OFS: offset adjustment

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-FAC

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Current (mA)	Window Size (mm)	Part number
400	0~±400			CYHCT-FAC-U/B400A-n
500	0~±500			CYHCT-FAC-U/B500A-n
600	0~±600			CYHCT-FAC-U/B600A-n
800	0~±800	4-20 ±1.0%	51x13	CYHCT-FAC-U/B800A-n
1000	0~±1000			CYHCT-FAC-U/B1000A-n
1500	0~±1500			CYHCT-FAC-U/B1500A-n
2000	0~±2000			CYHCT-FAC-U/B2000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, *Vcc*=+12VDC ±5%; n=4, *Vcc*=+15VDC ±5%; n=5, *Vcc*=+24VDC±5%)

Supply Voltage Output current: Current Consumption Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C, Linearity from 0 to I_r , T_A =25°C, Electric Offset current, T_A =25°C, Thermal Drift of Offset Current, Response Time at 90% of I_P Load resistance: Case Material:

Frequency Bandwidth (-3dB),

Markt Schwabener Str. 8 D-85464 Finsing Germany V_{cc} = +12V, +15V, +24VDC ± 5% 4-20mADC I_c < 25mA + Output current 3kV rms > 500 MΩ

 $X \le \pm 1.0\%$ FS $E_L \le \pm 0.5\%$ FS 4mA DC or 12mA DC $\le \pm 0.005$ mA/°C $t_r < 1$ ms 80-450Ω PBT, heat resistant 125°C flame retardant $f_b =$ DC - 20 kHz

General Data

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight:

Dimensions

Pin Arrangement

1:	Vcc
2:	Ground
3:	Output
4:	Ground

GIN: gain adjustment OFS: offset adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Markt Schwabener Str. 8 D-85464 Finsing Germany

Split Core Hall Effect DC Current Sensor CYHCT-KV

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Photovoltaic equipment
 Very good linearity 	 Frequency conversion timing equipment
 Using split cores and easy mounting 	 Various power supply
Less power consumption	 Uninterruptible power supplies (UPS)
Window structure	Electric welding machines
 Electrically isolating the output of the 	 Transformer substation
transducer from the current carrying	 Numerical controlled machine tools
conductor	Electric powered locomotive
No insertion loss	Microcomputer monitoring
 Current overload capability 	Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I</i> _r (A)	Measuring Range (A)	DC Output Voltage (V)	Window Size (mm)	Part number
300	0~±300			CYHCT-KV-U/B300A-xn
500	0~±500			CYHCT-KV-U/B500A-xn
600	0~±600	$X=0: 0-4V \pm 1.0\%$		CYHCT-KV-U/B600A-xn
800	0~±800	$x=3.0-50 \pm 1.0\%$ $x=8:0-101/ \pm 1.0\%$	64x16	CYHCT-KV-U/B800A-xn
1000	0~±1000	X=0.0-10V ±1.0%		CYHCT-KV-U/B1000A-xn
1500	0~±1500			CYHCT-KV-U/B1500A-xn
2000	0~±2000			CYHCT-KV-U/B2000A-xn

(n=2, *Vcc*= +12VDC; n=3, *Vcc*=+15VDC; n=4, *Vcc*=+24VDC, U: unidirectional input current; B: bidirectional input current, please give U or B in Part number)

Supply Voltage Output Voltage at I_r , T_A =25°C: Current Consumption Galvanic isolation, 50/60Hz, 1min: Output Impedance: Load resistance: V_{cc} = +12V, +15V, +24VDC ± 5% V_{out} =0- 4V, 0-5V, 0-10VDC I_c < 25mA 3kV rms R_{out} < 150Ω 10kΩ

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C, Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB), Case Material: $X < \pm 1.0\%$ FS $E_L < \pm 0.5\%$ FS $V_{oe} < 50$ mV $V_{om} < \pm 20$ mV $V_{ot} < \pm 1.0$ mV/°C $t_r < 1$ ms $f_b = DC - 20$ kHz PBT

General Data

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight:

Dimensions

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ 300g/unit

Pin Arrangement

1: Vcc

- 2: Ground
- 3: Output
- 4: Ground

GIN: gain adjustment OFS: offset adjustment

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect DC Current Sensor CYHCT-KC

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the rectified average value of the current in the carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring
Current overload capability	Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I</i> _r (A)	Measuring Range (A)	DC Output Current (mA)	Window size (mm)	Part number
300	0~±300			CYHCT-KC-U/B300A-n
500	0~±500			CYHCT-KC-U/B500A-n
600	0~±600			CYHCT-KC-U/B600A-n
800	0~±800	4-20 ±1.0%	64x16	CYHCT-KC-U/B800A-n
1000	0~±1000			CYHCT-KC-U/B1000A-n
1500	0~±1500			CYHCT-KC-U/B1500A-n
2000	0~±2000			CYHCT-KC-U/B2000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc=+15VDC ±5%; n=5, Vcc=+24VDC±5%)

Supply Voltage Current Consumption Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC V_{cc} = +12V, +15V, +24VDC ± 5% I_c < 25mA + Output current 3kV rms > 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_{r} , $T_{A}=25$ °C, Linearity from 0 to I_{r} , $T_{A}=25$ °C, Electric Offset current, $T_{A}=25$ °C, Thermal Drift of Offset Current, Response Time at 90% of I_{P} Load resistance: Frequency Bandwidth (-3dB),

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

> Markt Schwabener Str. 8 D-85464 Finsing Germany

 $X \le \pm 1.0\%$ FS $E_L \le \pm 0.5\%$ FS 4mA DC or 12mA DC $\le \pm 0.005$ mA/°C $t_r < 1$ ms 80-450Ω $f_b = DC - 20$ kHz

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Chen Y ang Technologies GmbH & Co KG

Unit weight: Case Material: 300g/unit PBT

Dimensions

Pin Arrangement

- 1: Vcc
- 2: Ground (GND)
- 3: Output
- 4: Ground (GND)

GIN: gain adjustment OFS: offset adjustment

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect DC Current Sensor CYHCT-KF2V

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure with split core Electrically isolating the output of the 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation
 transducer from the current carrying conductor No insertion loss Current overload capability 	 Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I</i> _r (A)	Measuring Range (A)	DC Output Voltage (V)	Window Size (mm)	Part number
500	0~±500			CYHCT-KF2V-U/B500A-xn
600	0~±600	x 0, 0 4)/ , 4 00/		CYHCT-KF2V-U/B600A-xn
800	0~±800	$X=0.0-4V \pm 1.0\%$		CYHCT-KF2V-U/B800A-xn
1000	0~±1000	$x=3.0-5V \pm 1.0\%$ $x=9.0.10V \pm 1.0\%$	85 x 27	CYHCT-KF2V-U/B1000A-xn
1500	0~±1500	X=0. 0-10V ±1.0/0		CYHCT-KF2V-U/B1500A-xn
2000	0~±2000			CYHCT-KF2V-U/B2000A-xn
3000	0~±3000			CYHCT-KF2V-U/B3000A-xn

(n=2, *Vcc*= +12VDC; n=3, *Vcc*=+15VDC; n=4, *Vcc*=+24VDC, U: unidirectional input current; B: bidirectional input current, please give U or B in Part number)

Supply Voltage Output Voltage at I_n , T_A =25°C: Current Consumption Galvanic isolation, 50/60Hz, 1min: Output Impedance: Load resistance: V_{cc} = +12V, +15V, +24VDC ± 5% V_{out} =0- 4V, 0-5V, 0-10VDC I_c < 25mA 3kV rms R_{out} < 150Ω 10kΩ

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C, Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB), Case Material: $X < \pm 1.0\%$ FS $E_L < \pm 0.5\%$ FS $V_{oe} < 50mV$ $V_{om} < \pm 20mV$ $V_{ot} < \pm 1.0mV/°C$ $t_r < 1ms$ $f_b = DC - 20$ kHz PBT

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

Dimensions

Vcc: +12V, +15V, +24V

О

 \cap

GND

Output

GND

CYHCT-

KF2V

Pin Arrangement

- 1: Vcc
- 2: Ground (GND)
- 3: Output
- 4: NC
- 5: NC

GIN: gain adjustment OFS: offset adjustment

Notes:

1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.

С

Vo

- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect DC Current Sensor CYHCT-KF2C

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Photovoltaic equipment
 Very good linearity 	 Frequency conversion timing equipment
 Using split cores and easy mounting 	 Various power supply
Less power consumption	 Uninterruptible power supplies (UPS)
Window structure with split core	Electric welding machines
Electrically isolating the output of the	Transformer substation
transducer from the current carrying	Numerical controlled machine tools
conductor	Electric powered locomotive
No insertion loss	Microcomputer monitoring
 Current overload capability 	Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I</i> _r (A)	Measuring Range (A)	DC Output Current (mA)	Window Size (mm)	Part number
500	0~±500			CYHCT-KF2C-U/B500A-n
600	0~±600			CYHCT-KF2C-U/B600A-n
800	0~±800			CYHCT-KF2C-U/B800A-n
1000	0~±1000	4-20 ±1.0%	85 x 27	CYHCT-KF2C-U/B1000A-n
1500	0~±1500			CYHCT-KF2C-U/B1500A-n
2000	0~±2000			CYHCT-KF2C-U/B2000A-n
3000	0~±3000			CYHCT-KF2C-U/B3000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

Supply Voltage Output current: Current Consumption Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC V_{cc} = +12V, +15V, +24VDC ± 5% 4-20mADC I_c < 25mA + Output current 3kV rms > 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_n , $T_A=25^{\circ}$ C, Linearity from 0 to I_n , $T_A=25^{\circ}$ C, Electric Offset current, $T_A=25^{\circ}$ C, Thermal Drift of Offset Current, Response Time at 90% of I_P Load resistance: Frequency Bandwidth (-3dB), Case Material: $X \le \pm 1.0\%$ FS $E_{L} \le \pm 0.5\%$ FS 4mA DC or 12mA DC $\le \pm 0.005$ mA/°C $t_{r} < 1$ ms 80-450Ω $f_{b} =$ DC - 20 kHz PBT

General Data

Ambient Operating Temperature, Ambient Storage Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Dimensions

Pin Arrangement

1: Vcc 2: Ground (GND) 3: Output 4: NC 5: NC

GIN: gain adjustment OFS: offset adjustment

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect DC Current Sensor CYHCT-K104V

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I</i> _r (A)	Measuring Range (A)	DC Output Voltage (V)	Window Size (mm)	Part number
500	0~±500	· · /		CYHCT-K104V-U/B500A-xn
1000	0~±1000			CYHCT-K104V-U/B1000A-xn
1500	0~±1500	$X=0: 0-4V \pm 1.0\%$		CYHCT-K104V-U/B1500A-xn
2000	0~±2000	$x=3.0-5V \pm 1.0\%$ $x=9:0.10V \pm 1.0\%$	104 x 36	CYHCT-K104V-U/B2000A-xn
3000	0~±3000	X=0. 0-10V ±1.0%		CYHCT-K104V-U/B3000A-xn
4000	0~±4000			CYHCT-K104V-U/B4000A-xn
5000	0~±5000			CYHCT-K104V-U/B5000A-xn

(n=2, *Vcc*= +12VDC; n=3, *Vcc*=+15VDC; n=4, *Vcc*=+24VDC, U: unidirectional input current; B: bidirectional input current, please give U or B in Part number)

Supply Voltage Output Voltage at I_r , T_A =25°C: Current Consumption Galvanic isolation, 50/60Hz, 1min: Output Impedance: Load resistance: V_{cc} = +12V, +15V, +24VDC ± 5% V_{out} =0- 4V, 0-5V, 0-10VDC I_c < 25mA 3kV rms R_{out} < 150Ω 10kΩ

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C, Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB), Case Material: $X < \pm 1.0\%$ FS $E_L < \pm 0.5\%$ FS $V_{oe} < 50mV$ $V_{om} < \pm 20mV$ $V_{ot} < \pm 1.0mV/°C$ $t_r < 1ms$ $f_b = DC - 20 \text{ kHz}$ PBT

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

Dimensions

GIN: gain adjustment OFS: offset adjustment

Notes:

1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.

Vo

- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

K104V

GND

Split Core Hall Effect DC Current Sensor CYHCT-K104C

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Photovoltaic equipment
Very good linearity	Frequency conversion timing equipment
 Using split cores and easy mounting 	Various power supply
Less power consumption	 Uninterruptible power supplies (UPS)
Window structure with split core	Electric welding machines
 Electrically isolating the output of the 	Transformer substation
transducer from the current carrying	Numerical controlled machine tools
conductor	Electric powered locomotive
 No insertion loss 	Microcomputer monitoring
 Current overload capability 	Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Current (mA)	Window Size (mm)	Part number
500	0~±500			CYHCT-K104C-U/B500A-n
1000	0~±1000			CYHCT-K104C-U/B1000A-n
1500	0~±1500			CYHCT-K104C-U/B1500A-n
2000	0~±2000	4-20 ±1.0%	104 x 36	CYHCT-K104C-U/B2000A-n
3000	0~±3000			CYHCT-K104C-U/B3000A-n
4000	0~±4000			CYHCT-K104C-U/B4000A-n
5000	0~±5000			CYHCT-K104C-U/B5000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc=+15VDC ±5%; n=5, Vcc=+24VDC±5%)

Supply Voltage Output current: Current Consumption Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC V_{cc} = +12V, +15V, +24VDC ± 5% 4-20mADC I_c < 25mA + Output current 3kV rms > 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_n , $T_A=25$ °C, Linearity from 0 to I_n , $T_A=25$ °C, Electric Offset current, $T_A=25$ °C, Thermal Drift of Offset Current, Response Time at 90% of I_P Load resistance: Frequency Bandwidth (-3dB), Case Material: $X \le \pm 1.0\%$ FS $E_{L} \le \pm 0.5\%$ FS 4mA DC or 12mA DC $\le \pm 0.005$ mA/°C $t_{r} < 1$ ms 80-450Ω $f_{b} =$ DC - 20 kHz PBT

 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

Dimensions

Pin Arrangement

1(+): Vcc 2(-): Ground (GND) 3(O): Output 4(G): Ground (GND)

GIN: gain adjustment OFS: offset adjustment

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect DC Current Sensor CYHCT-C5

This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Small size Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Measuring range M	300A ~ 6000A DC
Linearity range 1.5 x M (for 300A ~ 4000A), 6500A (for >4000A)	
Overload capacity	5 x M _{max} (maximum measuring range)
Nominal output signals	0-4V, 0-5V, 0-10V, -5V~+5V, 0-20mA, 4-20mA, -20mA~+20mA ,
Supply voltage	+12VDC, +15VDC, +24VDC, ±12VDC, ±15VDC
Current consumption	18mA ~ 50mA + output current
Galvanic isolation	3KV RMS/50Hz/min

Accuracy and Dynamic Performances

Zero offset voltage	±20	mV
Hysteresis error	±10	mV
Thermal drift of offset current	≤500	ppm/°C
Response time	≤1 (di/dt=50A/µs)	ms
Accuracy	±1.0	%
Linearity	≤1.0	%FS

General Data

Operating temperature	-10 ~ +80	°C
Storage temperature	-25 ~ +85	°C

Definition of Part number:

(1)	(2)	(3)	(4)	(5)
Series name	Case style	Rated Input current (M=U/B + m)	Output signal	Power supply
СҮНСТ	C5	m = 300A, 400A, 500A, 600A, 700A, 800A, 1000A, 2000A,3000A, 4000A, 5000A,6000A	x=0: 0-4V DC x=3: 0-5V DC x=4: 0-20mA DC x=5: 4-20mA DC x=8: 0-10V DC	n=2: +12V DC n=3: +15V DC n=4: +24V DC n=5: ±12V DC n=6: ±15V DC

U: unidirectional input current; **B:** bidirectional input current

Output Signal of Custom Made Sensors:

x=1: tracing voltage 5V DC, x=2: tracing current 20mA DC

- Example 1: CYHCT-C5-U1000A -34, Hall Effect DC Current sensor with Output signal: 0-5V DC Power supply: +24V DC Rated input current: 0-1000A DC
- Example 2: CYHCT-C5-B1000A -34, Hall Effect DC Current sensor with Output signal: 0-5V DC Power supply: +24V DC Rated input current: -1000A ~ +1000ADC

DIMENSIONS (mm)

CONNECTION

The current carrying cable must pass through the window. The phase of output is the same as that of the current passing the window in the direction of the arrow indicated on the case.

a) Wiring of Sensors Using Double Power Supplies

Voltage Output

1(+): +15V/+12V Power Supply 2(-): -15V/-12V Power Supply 3(M): Output 4(G): Ground

Relation between Input and Output:

Sensor CYHCT-C5	5-U1000A -35	Sensor CYHCT	-C5-B1000A -35
Input current (A)	Output voltage (V)	Input current (A)	Output voltage (V)
0	0	-1000	0
250	1.25	-500	1.25
500	2.5	0	2.5
750	3.75	500	3.75
1000	5	1000	5

Current Output

- 1(+): +15V/+12V Power Supply
- 2(-): -15V/-12V Power Supply
- 3(M): Output
- 4(G): Ground

Relation between Input and Output (for $R_m=250 \Omega$):

Sensor CYHCT-C5-U1000A -45		Sensor CYHCT-C5-B1000A -45			
Input	Output current	Output voltage	Input	Output current	Output voltage Vo
current (A)	lo(mA)	Vo (V)	current (A)	lo(mA)	(V)
0	0	0	-1000	0	0
250	5	1.25	-500	5	1.25
500	10	2.5	0	10	2.5
750	15	3.75	500	15	3.75
1000	20	5	1000	20	5

B) Wiring of Sensors Using Single Power Supply

Voltage Output

1(+): +15V, +12V, +24V 2(-): NC 3(M): Output 4(G): Ground

Relation between Input and Output:

Sensor CYHCT-C5-U	Sensor CYHCT-C5-B1000A -34		
Input current (A)	Output voltage (V)	Input current (A)	Output voltage (V)
0	0	-1000	0
250	1.25	-500	1.25
500	2.5	0	2.5
750	3.75	500	3.75
1000	5	1000	5

Current Output

1(+): +15V, +12V, +24V 2(-): NC 3(M): Output 4(G): Ground

Relation between Input and Output (for $R_m=250 \Omega$):

Sensor CYHCT-C5-U1000A -54			Sensor CYHCT-C5-B1000A -54		
Input	Output current	Output voltage	Input	Output current	Output voltage Vo (V)
current	lo(mA)	Vo (V)	current (A)	lo(mA)	
(A)					
0	4	1	-1000	4	1
250	8	2	-500	8	2
500	12	3	0	12	3
750	16	4	500	16	4
1000	20	5	1000	20	5

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer case.

Split Core Hall Effect DC Current Sensor CYHCT-KCV

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure with split core Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data/Input

Primary Nominal	Primary Current	Output Voltage (V)	Part number
DC Current <i>I_r</i> (A)	Measuring Range Ip(A)		
1000A	0 ~ ± 1000A		CYHCT-KCV-U/B1000A-xn
2000A	0 ~ ± 2000A	$x=0: 0-4V \pm 1.0\%$	CYHCT-KCV-U/B2000A-xn
3000A	0 ~ ± 3000A	$X=3: 0-5V \pm 1.0\%$	CYHCT-KCV-U/B3000A-xn
4000A	0 ~ ± 4000A	$X=0.0-10V \pm 1.0\%$ (For 0-10V output	CYHCT-KCV-U/B4000A-xn
5000A	0 ~ ± 5000A	the power supply	CYHCT-KCV-U/B5000A-xn
6000A	0 ~ ± 6000A	must be 15VDC	CYHCT-KCV-U/B6000A-xn
8000A	0 ~ ± 8000A	or 24VDC)	CYHCT-KCV-U/B8000A-xn
10000A	0 ~ ± 10000A		CYHCT-KCV-U/B10000A-xn

(n=2, *Vcc*= +12VDC; n=3, *Vcc*=+15VDC; n=4, *Vcc*=+24VDC, n=5, *Vcc*=±12VDC, n=6, *Vcc*=±15VDC, n=7, *Vcc*=±24VDC, U: unidirectional, B: bidirectional)

Supply Voltage: Current Consumption Isolation Voltage

Electrical Data/Output

Output Voltage at I_n , $T_A=25$ °C: Output Impedance: Load Resistor:

Accuracy

Accuracy at I_r , $T_A=25^{\circ}$ C (without offset), Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB),

> Markt Schwabener Str. 8 D-85464 Finsing Germany

 V_{cc} =+12V, +15V, +24V \pm 5% I_c < 50mA 6kV, 50/60Hz, 1min

$$\label{eq:Vout} \begin{split} V_{\text{out}} = & 0\text{-} 4\text{V}, \ 0\text{-}5\text{V}, \ 0\text{-}10\text{VDC} \\ R_{\text{out}} < & 150\Omega \\ R_{\text{L}} > & 10\text{k}\Omega \end{split}$$

X < 1.0% $E_L < 1.0\%$ FS $V_{oe} < 25mV$ $V_{om} < \pm 30mV$ $V_{ot} < \pm 1.0mV/^{\circ}C$ T.C. $< \pm 0.1\%$ / $^{\circ}C$ $t_r < 1ms$ $f_b = DC-3$ kHz

General Data

Ambient Operating Temperature, Ambient Storage Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect DC Current Sensor CYHCT-KCC

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure with split core Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power petwork monitoring

Electrical Data/Input

Primary Nominal DC Current <i>I</i> _r (A)	Primary Current Measuring Range $I_{\rho}(A)$	Output current (mA)	Part number
1000A	0 ~ ± 1000A		CYHCT-KCC-U/B1000A-n
2000A	0 ~ ± 2000A		CYHCT-KCC-U/B2000A-n
3000A	0 ~ ± 3000A		CYHCT-KCC-U/B3000A-n
4000A	0 ~ ± 4000A	1.20m	CYHCT-KCC-U/B4000A-n
5000A	0 ~ ± 5000A	4-2011A	CYHCT-KCC-U/B5000A-n
6000A	0 ~ ± 6000A		CYHCT-KCC-U/B6000A-n
8000A	0 ~ ± 8000A		CYHCT-KCC-U/B8000A-n
10000A	0 ~ ± 10000A		CYHCT-KCC-U/B10000A-n

(n=2, Vcc= +12VDC; n=3, Vcc =+15VDC; n=4, Vcc =+24VDC, n=5, Vcc =±12VDC, n=6, Vcc =±15VDC, n=7, Vcc =±24VDC, U: unidirectional, B: bidirectional)

Supply Voltage: Current Consumption Isolation Voltage V_{cc} =+12V, +15V, +24V \pm 5% I_c < 50mA + Output current 6kV, 50/60Hz, 1min

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C (without offset), Linearity from 0 to I_r , T_A =25°C, Electric Offset Current, T_A =25°C, Thermal Drift of Offset current, Load resistance: Response Time at 90% of I_P (*f*=1k Hz) Frequency Bandwidth (-3dB),

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

> Markt Schwabener Str. 8 D-85464 Finsing Germany

<1.0% E_L <1.0% FS 4mA DC or 12mA DC <±0.005mA/°C 80-450Ω t_r < 1ms f_b = DC-3 kHz

 $T_A = -25^{\circ}C \sim +85^{\circ}C$ $T_S = -40^{\circ}C \sim +100^{\circ}C$

PIN Definition and Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-HBV

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I</i> _r (A)	Measuring Range (A)	DC Output Voltage (V)	Window Size (mm)	Part number
2000	0~±2000			CYHCT-HBV-U/B2000A-xn
3000	0~±3000	x 0, 0, 4\ / , 4, 00/		CYHCT-HBV-U/B3000A-xn
4000	0~±4000	$X=0: 0-4V \pm 1.0\%$		CYHCT-HBV-U/B4000A-xn
5000	0~±5000	$X=3.0-3V \pm 1.0\%$ $x=8:0.10V \pm 1.0\%$	140 x 50	CYHCT-HBV-U/B50000A-xn
6000	0~±6000	X=0. 0-10V ±1.0%		CYHCT-HBV-U/B6000A-xn
8000	0~±8000			CYHCT-HBV-U/B8000A-xn
10000	0~±10000			CYHCT-HBV-U/B10000A-xn

(n=2, *Vcc*= +12VDC; n=3, *Vcc*=+15VDC; n=4, *Vcc*=+24VDC, U: unidirectional input current; B: bidirectional input current, please give U or B in Part number)

Supply Voltage Output Voltage at I_n , T_A =25°C: Current Consumption Galvanic isolation, 50/60Hz, 1min: Output Impedance: Load resistance: V_{cc} = +12V, +15V, +24VDC ± 5% V_{out} =0- 4V, 0-5V, 0-10VDC I_c < 25mA 3kV rms R_{out} < 150Ω 10kΩ

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^{\circ}$ C, Linearity from 0 to I_r , $T_A=25^{\circ}$ C, Electric Offset Voltage, $T_A=25^{\circ}$ C, Magnetic Offset Voltage ($I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB), Case Material: $X < \pm 1.0\%$ FS $E_L < \pm 0.5\%$ FS $V_{oe} < 50mV$ $V_{om} < \pm 20mV$ $V_{ot} < \pm 1.0mV/°C$ $t_r < 1ms$ $f_b = DC - 20$ kHz PBT

General Data

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-HBC

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Photovoltaic equipment
Very good linearity	 Frequency conversion timing equipment
easy mounting	 Various power supply
Less power consumption	 Uninterruptible power supplies (UPS)
Window structure	Electric welding machines
 Electrically isolating the output of the 	 Transformer substation
transducer from the current carrying	Numerical controlled machine tools
conductor	Electric powered locomotive
No insertion loss	Microcomputer monitoring
 Current overload capability 	Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Current (mA)	Window Size (mm)	Part number
2000	0~±2000			CYHCT-HBC-U/B2000A-n
3000	0~±3000			CYHCT-HBC-U/B3000A-n
4000	0~±4000			CYHCT-HBC-U/B4000A-n
5000	0~±5000	4-20 ±1.0%	140 x 50	CYHCT-HBC-U/B5000A-n
6000	0~±6000			CYHCT-HBC-U/B6000A-n
8000	0~±8000			CYHCT-HBC-U/B8000A-n
10000	0~±10000			CYHCT-HBC-U/B10000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

Supply Voltage Output current: Current Consumption Galvanic isolation, 50/60Hz, 1min: Isolation resistance @ 500 VDC

 V_{cc} = +12V, +15V, +24VDC ± 5% 4-20mADC I_c < 25mA + Output current 3kV rms > 500 MΩ

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C, Linearity from 0 to I_r , T_A =25°C, Electric Offset current, T_A =25°C, Thermal Drift of Offset Current, Response Time at 90% of I_P Load resistance: Frequency Bandwidth (-3dB), Case Material: $X \le \pm 1.0\%$ FS $E_L \le \pm 0.5\%$ FS 4mA DC or 12mA DC $\le \pm 0.005$ mA/°C $t_r < 1$ ms 80-450Ω $f_b = DC - 20$ kHz PBT

General Data

Ambient Operating Temperature, Ambient Storage Temperature, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-K210V

This Hall Effect current sensor is based on open loop principle and designed with high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Produ	uct Characteristics	Applications
 Excellent at Very good I Less power Window str Electrically transducer conductor No insertior Current over 	ccuracy linearity r consumption ucture isolating the output of the from the current carrying n loss erload capability	 Photovoltaic equipment Frequency conversion timing equipments Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipments Electric powered locomotive Microcomputer monitoring

Electrical Data

Primary Nominal DC Current <i>I</i> _r (A)	Primary Current Measuring Range I _p (A)	Output Voltage (V)	Part number
3000A	0 ~ ± 3000A	x=0: 0-4V ±1.0%	CYHCT-K210V-U/B3000A-xn
4000A	0 ~ ± 4000A	x=3: 0-5V ±1.0%	CYHCT-K210V-U/B4000A-xn
5000A	0 ~ ± 5000A	x=8: 0-10V ±1.0%	CYHCT-K210V-U/B5000A-xn
6000A	0 ~ ± 6000A	(For 0-10V output	CYHCT-K210V-U/B6000A-xn
8000A	0 ~ ± 8000A	the power supply	CYHCT-K210V-U/B8000A-xn
10000A	0 ~ ± 10000A	must be 15VDC	CYHCT-K210V-U/B10000A-xn
15000A	0 ~ ± 15000A	or 24VDC)	CYHCT-K210V-U/B15000A-xn
20000A	0 ~ ± 20000A	x=5: Special output	CYHCT-K210V-U/B20000A-xn

(n=2, Vcc= +12VDC; n=3, Vcc =+15VDC; n=4, Vcc =+24VDC; n=5, Vcc =±12VDC; n=6, Vcc =±15VDC; n=7, Vcc =±24VDC; n=8, Vcc=+125VDC. U: unidirectional, B: bidirectional, please give U or B in the part number)

Supply Voltage: Current Consumption Isolation Voltage

Output Voltage at I_r , T_A =25°C: Output Impedance: Load Resistor: Accuracy at I_r , T_A =25°C (without offset), Linearity from 0 to I_r , T_A =25°C, Linear Measuring range, Overload capability, Electric Offset Voltage, T_A =25°C, Magnetic Offset Voltage, T_A =25°C, Magnetic Offset Voltage, $I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB),

> Markt Schwabener Str. 8 D-85464 Finsing Germany

 V_{cc} =+12V, +15V, +24V± 5% $I_c < 50$ mA 6kV, 50/60Hz, 1min V_{out} =0- 4V, 0-5V, 0-10VDC $R_{out} < 150\Omega$ $R_L > 10k\Omega$ X < 1.0% $E_L < 1.0\%$ FS 1.2 times of measuring range 3 times of measuring range $V_{oe} < 30$ mV $V_{om} < \pm 40$ mV

V_{ot} <±1.0mV/°C T.C. < ±0.1% /°C t_r < 1ms

 $f_b = DC-3kHz$

General Data

Ambient Operating Temperature, Ambient Storage Temperature, T_A =-25°C ~ +85°C T_S =-40°C ~ +100°C

PIN Definition and Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of primary current is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-K210C

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product	Characteristics	Applications
 Excellent accur Very good linea Less power cor Window structu Electrically isol transducer from conductor No insertion los Current overloa 	racy arity nsumption ure ating the output of the n the current carrying ss ad capability	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring

Electrical Data/Input

Primary Nominal DC Current <i>I_r</i> (A)	Primary Current Measuring Range $I_{\rho}(A)$	Output current (mA)	Part number
3000A	0 ~ ± 3000A		CYHCT-K210C-U/B3000A-n
4000A	0 ~ ± 4000A		CYHCT-K210C-U/B4000A-n
5000A	0 ~ ± 5000A		CYHCT-K210C-U/B5000A-n
6000A	0 ~ ± 6000A	1.20m	CYHCT-K210C-U/B6000A-n
8000A	0 ~ ± 8000A	4-2011A	CYHCT-K210C-U/B8000A-n
10000A	0 ~ ± 10000A		CYHCT-K210C-U/B10000A-n
15000A	0 ~ ± 15000A		CYHCT-K210C-U/B15000A-n
20000A	0 ~ ± 20000A		CYHCT-K210C-U/B20000A-n

(n=2, *Vcc*= +12VDC; n=3, *Vcc*=+15VDC; n=4, *Vcc*=+24VDC; n=5, *Vcc*=±12VDC; n=6, *Vcc*=±15VDC; n=7, *Vcc*=±24VDC; n=8, Vcc=+125VDC. U: unidirectional, B: bidirectional)

Supply Voltage: Current Consumption Isolation Voltage

Electrical Properties

Accuracy at I_r , T_A =25°C (without offset), Linearity from 0 to I_r , T_A =25°C, Linear Measuring range, Overload capability, Electric Offset Current, T_A =25°C, Thermal Drift of Offset Current, Load resistance: Response Time at 90% of I_P (*f*=1k Hz) Frequency Bandwidth (-3dB),

Ambient Operating Temperature, Ambient Storage Temperature, V_{cc} =+12V, +15V, +24V \pm 5% I_c < 50mA + Output current 6kV, 50/60Hz, 1min

<1.0% E_L <1.0% FS 1.2 times of measuring range 3 times of measuring range 4mA DC or 12mA DC <±0.005mA/°C 80-450Ω $t_r < 1ms$ $f_b = DC-3 \text{ kHz}$ $T_A = -25°C ~ +85°C$ $T_S = -40°C ~ +100°C$

PIN Definition and Dimensions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer