

Catalogue Open Loop Hall Effect DC Current Sensors Transducers with Round Windows

Copyright© 2020, ChenYang Technologies GmbH & Co. KG

All rights reserved. No part of this catalogue may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright holder.

Contact Address:

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel: +49 (0) 8121-25 74 100 Fax: +49 (0) 8121-2574 101 Email: info@chenyang.de Internet: www.chenyang.de

Tel:

Fax:

+49 (0) 8121-25 74 100

+49 (0) 8121-25 74 101

Email: info@chenyang.de

Internet: www.chenyang.de

Contents

Hall Effect DC Current Sensor CYCT03-L20	1
Hall Effect DC Current Sensor CYHCT-EKCV (Split Core)	4
Hall Effect DC Current Sensor CYHCT-EKCC (Split Core)	6
Hall Effect DC Current Sensor CYHCT-WS3	8
Hall Effect DC Current Sensor CYHCT-S3K (Split Core)	11
Hall Effect DC Current Sensor CYHCT-L20K	14
Hall Effect DC Current Sensor CYHCT-L21K (Split Core, DIN Rail Converter)	17
Hall Effect DC Current Sensor CYHCT-C1TV	22
Hall Effect DC Current Sensor CYHCT-C1TC	24
Hall Effect DC Current Sensor CYHCT-C2TV (Split Core, DIN Rail Converter)	26
Hall Effect DC Current Sensor CYHCT-C2TC (Split Core, DIN Rail Converter)	30
Hall Effect DC Current Sensor CYHCT-C4TV	
Hall Effect DC Current Sensor CYHCT-C4TC	36
Hall Effect DC Current Sensor CYHCT-L35K (Split Core)	38
Hall Effect DC Current Sensor CYHCT-D6V	41
Hall Effect DC Current Sensor CYHCT-D6C	44
Hall Effect DC Current Sensor CYHCT-C3TV (Split Core)	47
Hall Effect DC Current Sensor CYHCT-C3TC (Split Core)	49
Hall Effect DC Current Sensor CYHCT-K2V	51
Hall Effect DC Current Sensor CYHCT-K2C	53

Tel:

Fax:

+49 (0) 8121-25 74 100

+49 (0) 8121-25 74 101

Hall Effect DC Current Sensor CYCT03-L20

The sensor **CYCT03-L20** is based on magnetic modulation principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current.

Features and Advantages	Applications
 DC current measurement High isolation between primary and secondary circuits Protection against reversed polarity Output protection against electrical disturbances 	 DC motor drivers Battery banks, such as, monitoring load current and charge current, verifying operation Power supply management Telecommunication application

Specifications

Rated input current range	500mA, 750mA, 1A, 2A, 3A, 5A, 10A, 15A, 20A, 25A
Output signal	0-5VDC, 0-20mA, 4-20mA, 0-10VDC
Power supply	+12VDC, +15VDC, +24VDC
Measuring accuracy	±1.0% FS
Linearity (10% - 100%), 25°C	±0.5% FS
Isolation	between input, output and power supply
Load resistance	≥2kΩ for voltage output, ≤250Ω for current output
Isolation withstanding voltage	2.5 kV DC, 1min, leakage current 1mA
Operating temperature	-40°C ~ +85°C
Storage temperature	-40°C ~ +85°C
Relative humidity	10% ~ 90%
Response time	≤120ms
Thermal drift of offset voltage	≤600ppm/°C
Thermal Drift (-40°C to 85°C)	<2200ppm /°C
Quiescent power consumption	500mW – 1300mW (depending on power supply)
Mounting	Panel Screw mounting
Case style	L20 with aperture Ø20mm

Definition of Part number:

CYCT03	-	L20	-	М	-	х	n
(1)		(2)		(3)		(4)	(5)

(1)	(2)	(3)	(4)	(5)
Series name	Case style	Rated Input current (M=U/B+m)	Output signal	Power supply
CYCT03	L20	m = 500mA, 750mA, 1A, 2A, 3A, 5A, 10A, 15A, 20A, 25A	x=3: 0-5V DC x=4: 0-20mA DC x=5: 4-20mA DC x=8: 0-10V DC	n=2: +12V DC n=3: +15V DC n=4: +24V DC

U: unidirectional;

B: bidirectional (please add U or B in the part number)

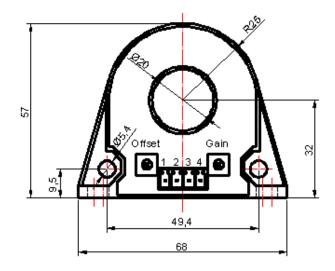
Example 1: CYCT03-L20-U10A -32, DC Current sensor with

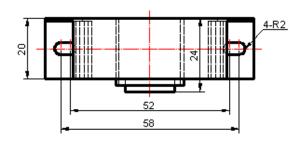
Output signal: 0-5V DC Power supply: +12V DC

Rated input current: 0-10A DC

Example 2: CYCT03-L20-U10A -54, DC Current sensor with

Output signal: 4-20mA DC Power supply: +24V DC


Rated input current: 0-10A DC

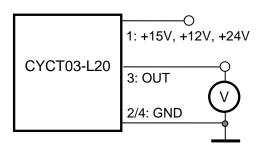

Example 3: CYCT03-L20-U10A -84, DC Current sensor with

Output signal: 0-10V DC Power supply: +24V DC

Rated input current: 0-10A DC

DIMENSIONS (mm)

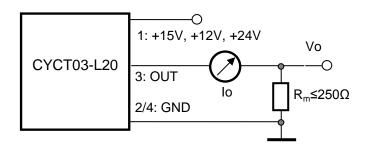
Dimensions: 68mm x 57mm x 24mm, Aperture: Ø20 mm


Tel:

CONNECTIONS

The current carrying cable must pass through the window. The current direction is indicated by the arrow on the case.

Wiring of Terminals for voltage output:



Relation between Input and Output:

Sensor CYCT03-L20-U10A-32			
Input current (A)	Output voltage (V)		
0	0		
2.5	1.25		
5.0	2.5		
7.5	3.75		
10	5		

1: Power supply; 2: GND; 3: Voltage Output; 4: GND

Wiring of Terminals for Current Output:

1: Power supply; 2: GND; 3: Current Output; 4: GND

Relation between Input and Output (for $R_m=250 \Omega$):

Sensor CYCT03-L20-U10A-54				
Input current (A) Output current Io(mA)		Output voltage Vo (V)		
0	4	1		
2.5	8	2		
5.0	12	3		
7.5	16	4		
10	20	5		

Notes:

- 1. Before powering on the device, make sure the polarities of all connections are correct. Avoid wrong connection.
- 2. The two potentiometers can (only if really necessary) be used to adjust the accuracy of the sensor by using a small screwdriver.
- 3. Make sure to use a measuring instrument which has a better accuracy than the sensor, when calibrating the sensor.
- 4. Best accuracy can be archieved if window is completly filled by the current-carrying conductor.

Split Core Hall Effect DC Current Sensor CYHCT-EKCV

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy Very good linearity	 Photovoltaic equipment Frequency conversion timing equipment
 Using split cores and easy mounting Less power consumption 	Various power supplyUninterruptible power supplies (UPS)
 Window structure Electrically isolating the output of the 	Electric welding machinesTransformer substation
transducer from the current carrying conductor	Numerical controlled machine toolsElectric powered locomotive
No insertion lossCurrent overload capability	 Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal	Measuring	DC Output Voltage	Aperture	Part number
DC Current I_r (A)	Range (A)	(V)	Diameter (mm)	
30A	0 ~ ± 30A			CYHCT-EKCV-U/B30A-xn
50A	0 ~ ± 50A	x=0: 0-4V ±1.0%		CYHCT-EKCV-U/B50A-xn
80A	0 ~ ± 80A	x=3: 0-5V ±1.0%	12	CYHCT-EKCV-U/B80A-xn
100A	0 ~ ± 100A	x=8: 0-10V ±1.0%	12	CYHCT-EKCV-U/B100A-xn
200A	0 ~ ± 200A			CYHCT-EKCV-U/B200A-xn
300A	0 ~ ± 300A			CYHCT-EKCV-U/B300A-xn

(n=2, *Vcc*= +12VDC; n=3, *Vcc* =+15VDC; n=4, *Vcc* =+24VDC, U: unidirectional input current; B: bidirectional input current, please give U or B in Part number)

Supply Voltage V_{cc} = +12V, +15V, +24VDC \pm 5% Output Voltage at I_D , T_A =25°C: V_{out} =0- 4V, 0-5V, 0-10VDC

Current Consumption $I_c < 25 \text{mA}$ Galvanic isolation, 50/60Hz, 1min: 3kV rms Output Impedance: $R_{\text{out}} < 150 \Omega$ Load resistance: 10k Ω

Accuracy and Dynamic performance data

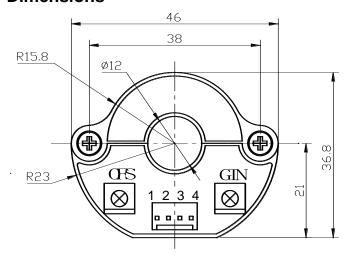
Accuracy at I_r , T_A =25°C, $X < \pm 1.0\%$ FS Linearity from 0 to I_r , T_A =25°C, $E_L < \pm 0.5\%$ FS Electric Offset Voltage, T_A =25°C, $V_{oe} < 50$ mV Magnetic Offset Voltage ($I_r \rightarrow 0$) $V_{om} < \pm 20$ mV Thermal Drift of Offset Voltage, $V_{ot} < \pm 1.0$ mV/°C Response Time at 90% of I_P (f=1k Hz) $t_r < 1$ ms

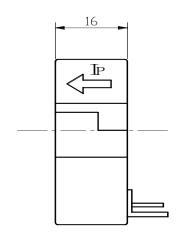
Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$

Case Material: PBT

Tel:

Fax:




General Data

Operating Temperature, Storage Temperature, Unit weight:

$$T_A = -25$$
°C ~ +85°C $T_S = -40$ °C ~ +100°C 35g/unit

Dimensions

CYHCT-EKCV 2GND CYHCT-EKCV 4GND Vo

Pin Arrangement

1: Vcc 2: Ground (GND)

3: Output

4: Ground (GND)

GIN: gain adjustment

OFS: offset adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer.

Split Core Hall Effect DC Current Sensor CYHCT-EKCC

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
Excellent accuracy	Photovoltaic equipment
 Very good linearity 	 Frequency conversion timing equipment
 Using split cores and easy mounting 	 Various power supply
 Less power consumption 	 Uninterruptible power supplies (UPS)
Window structure	Electric welding machines
 Electrically isolating the output of the 	 Transformer substation
transducer from the current carrying	 Numerical controlled machine tools
conductor	Electric powered locomotive
 No insertion loss 	Microcomputer monitoring
 Current overload capability 	Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Current (mA)	Aperture Diameter (mm)	Part number
30A	0 ~ ± 30A			CYHCT-EKCC-U/B30A-n
50A	0 ~ ± 50A			CYHCT-EKCC-U/B50A-n
80A	0 ~ ± 80A	4-20 ±1.0%	12	CYHCT-EKCC-U/B80A-n
100A	0 ~ ± 100A	4-20 ±1.0%	12	CYHCT-EKCC-U/B100A-n
200A	0 ~ ± 200A			CYHCT-EKCC-U/B200A-n
300A	0 ~ ± 300A			CYHCT-EKCC-U/B300A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

Supply Voltage V_{cc} = +12V, +15V, +24VDC \pm 5% Current Consumption I_c < 25mA + Output current

Galvanic isolation, 50/60Hz, 1min: 3kV rms Isolation resistance @ 500 VDC > 500 M Ω

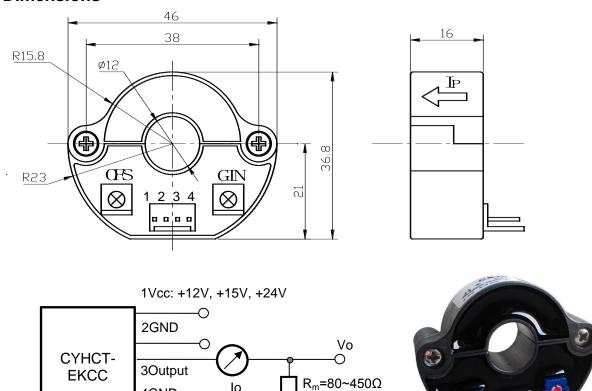
Accuracy and Dynamic performance data

Accuracy at I_n , T_A =25°C, $X < \pm 1.0\%$ FS Linearity from 0 to I_n , T_A =25°C, $E_L < \pm 0.5\%$ FS Electric Offset current, T_A =25°C, $E_L < \pm 0.005$ mA/°C Thermal Drift of Offset Current, $E_L < \pm 0.005$ mA/°C Response Time at 90% of $E_L < \pm 0.005$ mA/°C

Load resistance: 80-450 Ω Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$

Case Material: PBT

Tel:



General Data

Operating Temperature, Storage Temperature, Unit weight:

$$T_A = -25$$
°C ~ +85°C
 $T_S = -40$ °C ~ +100°C
35g/unit

Dimensions

Pin Arrangement

4GND

1: Vcc 2: Ground (GND) 3: Output 4: Ground (GND)

GIN: gain adjustment OFS: offset adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Tel: +49 (0) 8121-25 74 100 Fax: +49 (0) 8121-25 74 101

Hall Effect DC Current Sensor CYHCT-WS3

The sensor CYHCT-WS3 is a Hall Effect sensor for the measurement of DC current. The sensor has a galvanic isolation between the high power primary conductor and the secondary electronic circuit and different output signals and different power supplies.

Features and Advantages	Applications
 DC current measurement Output signal option (4-20mA, 0-5V, 0-10V, ±5V) High isolation between primary and secondary circuits No insertion losses Temperature compensation 	 Photovoltaic equipment Battery banks, such as, monitoring load current and charge current, verifying operation Transportation, measuring traction power Phase fired controlled heaters Directly connect to PLC Sense motor stalls and short circuits Industrial instrumentation

Specifications

Rated input current (DC)	25A, 30A,40A,50A,60A,70A,80A,90A,100A,200A,300A,400A,500A				
Linear measuring range	1.2 times of rated input current				
Output signals	±5V DC, 0-5VDC,	±5V DC, 0-5VDC, 0-10VDC, 0-20mADC, 4-20mADC			
Power supply	+12V DC, +15VD0	C, +24V DC			
Measuring accuracy	Voltage output: ±1	.0% for 25A~40A, ±0.5% fo	r 50A~	-500A	
	4-20mA output: ±1	.0% for 25A~40A, ±0.5% fo	r 50A-	~500A	
	0-20mA output: ±1	.0% for 25A ~ 500A			
Linearity (10% - 100%), 25°C		0.5% for 25A~40A, ±0.2% fo			
		0.5% for 25A~40A, ±0.2% fo	r 50A-	~500A	
	0-20mA output: ±0).5% for 25A ~ 500A			
Zero offset voltage	±10mV	Hysteresis error		±10mV	
Thermal drift of offset voltage	≤300ppm/°C	Thermal Drift (-10°C to 50°	C)	<1000ppm /°C	
Galvanic isolation	3 kV DC,1min.				
Isolation resistance	≥100MΩ				
Response time	≤10µs for instantaneous output, <1ms DC output				
Frequency Bandwidth (-3dB)	DC – 8kHz				
di/dt following accuracy	50A/µs				
Overload capacity	5 times of rated current				
Current consumption	≤25mA for voltage	output, 25mA + Output curi	rent fo	r current output	
Output load	Voltage output : ≥2kΩ, Current output: ≤250Ω				
Mounting	35mm DIN Rail				
Case style and Window size	WS3 with aperture Ø20mm				
Protection of Case	IP20				
Operating temperature	-40°C ~ +70°C	Storage temperature	-40°0	C ~ +85°C	
Relative humidity	≤90%				
MTBF	≥ 100k hours				

Definition of Part number:

СҮНСТ	-	WS3	-	М	-	х	n
(1)		(2)		(3)		(4)	(5)

Tel:

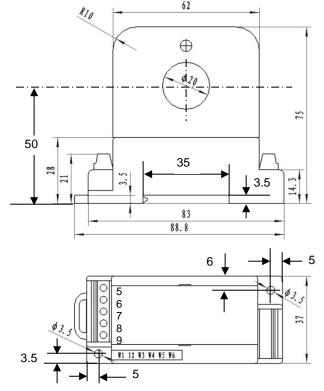
(1)	(2)	(3)	(4)	(5)
Series name	Case style	Rated Input current (M=U/B m)	Output signal	Power supply
СҮНСТ	WS3	m = 25A, 30A, 40A, 50A,60A,70A,80A,90A,100A, 200A, 300A, 400A, 500A (other input current between 25A-500A)	x=1: tracing voltage ±5V DC x=3: 0-5V DC x=4: 0-20mA DC x=5: 4-20mA DC x=8: 0-10V DC	n=2: +12V DC n=3: +15V DC n=4: +24V DC

U: unidirectional;

B: bidirectional (please give U or B in the part number)

Example 1: CYHCT-WS3-U100A -34, Hall Effect DC Current sensor with

Output signal: 0-5V DC Power supply: +24V DC

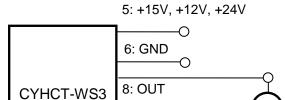

Rated input current: 0-100A DC

Example 2: CYHCT-WS3-U100A -54, Hall Effect DC Current sensor with

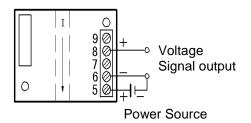
Output signal: 4-20mA DC Power supply: +24V DC

Rated input current: 0-100A DC

DIMENSIONS (mm)



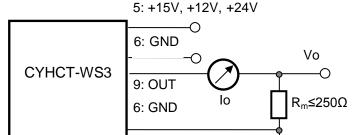
CONNECTIONS

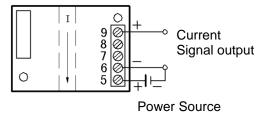

The current carrying cable must pass through the window. The phase of output is the same as that of the current passing the window in the direction of the arrow indicated on the case.

Wiring of Terminals for voltage output:

6: GND

5: +15V, +12V, +24V Power Supply


6: GND


8: Voltage output

Relation between Input and Output:

Sensor CYHCT-WS3-U100A-34				
Input current (A)	Output voltage (V)			
0	0			
25	1.25			
50	2.5			
75	3.75			
100	5			

Wiring of Terminals for Current Output:

5: +15V, +12V, +24V Power Supply

6: GND 9: Current output

Relation between Input and Output (for $R_m=250 \Omega$):

Sensor CYHCT-WS3-U100A-54						
Input current (A)	Output current lo(mA)	Output voltage Vo (V)				
0	4	1				
25	8	2				
50	12	3				
75	16	4				
100	20	5				

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screw driver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer case.

Split Core Hall Effect DC Current Sensor CYHCT-S3K

The sensor CYHCT-S3K is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Features and Advantages	Applications
 DC current measurement Output signal option (4-20mA, 0-5V, 0-10V) High isolation between primary and secondary circuits No insertion losses Split Core, easy installation Temperature compensation 	 Photovoltaic equipment Battery banks, such as, monitoring load current and charge current, verifying operation Transportation, measuring traction power or auxiliary loads Phase fired controlled heaters Directly connect to PLC Sense motor stalls and short circuits Industrial instrumentation

Specifications

Rated input current (DC)	25A,30A,40A,50A,60A,70A,80A,90A,100A,200A,300A,400A,500A				
Linear measuring range	1.2 times of rated input current				
Output signals	0-5VDC, 0-10VDC	0-5VDC, 0-10VDC, 0-20mADC, 4-20mADC			
Power supply	+12V DC, +15VD0	C, +2	24V DC		
Measuring accuracy	Voltage output: ±1	.0%	for 25A~49A, ±0.5% for	r 50A	~500A
	4-20mA output: ±1	1.0%	for 25A~49A, ±0.5% fo	r 50A	~500A
	0-20mA output: ±1	.0%	for 25A ~ 500A		
Linearity at 25°C			for 25A~49A, ±0.2% fo		
			for 25A~49A, ±0.2% fo	r 50A	~500A
	0-20mA output: ±0).5%	for 25A ~ 500A		
Zero offset voltage	±10mV	Hys	steresis error:		±10mV
Thermal drift of offset voltage	≤300ppm/°C Thermal Drift (-10°C to 50°C): <1000ppm /				<1000ppm /°C
Galvanic isolation	3 kV DC, 1 min				
Isolation resistance	≥100MΩ				
Response time	<1ms DC output				
Frequency Bandwidth (-3dB)	DC – 8kHz				
di/dt following accuracy	50A/µs				
Overload capacity	5 times of rated current				
Current consumption	≤25mA for voltage	out	out, 25mA + Output curi	ent fo	or current output
Output load	Voltage output : ≥:	2kΩ,	Current output: ≤250Ω		
Mounting	Panel Screw mounting				
Case style and Window size	S3K with aperture Ø20mm				
Protection of Case	IP20				
Operating temperature	-40°C ~ +85°C		Storage temperature	-55°	C ~ +100°C
Relative humidity	≤90%				
MTBF	≥ 100k hours			•	

Definition of Part number:

СҮНСТ	-	S3K	-	М	-	х	n
(1)		(2)		(3)		(4)	(5)

Tel:

Fax:

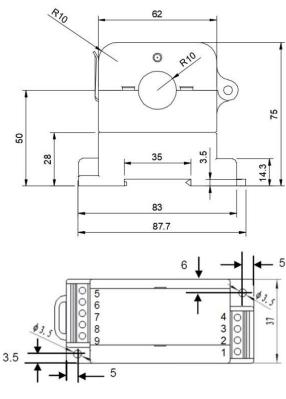
(1)	(2)	(3)	(4)	(5)
Series name	Case style	Rated Input current (M=U/B m)	Output signal	Power supply
СҮНСТ	S3K	m = 25A, 30A, 40A,50A,60A,70A, 80A, 90A,100A, 200A, 300A, 400A, 500A (other input current between 25A-500A)	x=3: 0-5V DC x=4: 0-20mA DC x=5: 4-20mA DC x=8: 0-10V DC	n=2: +12V DC n=3: +15V DC n=4: +24V DC

U: unidirectional;

B: bidirectional (please give U or B in the part number)

Example 1: CYHCT-S3K-U100A -34, Hall Effect DC Current sensor with

Output signal: 0-5V DC Power supply: +24V DC

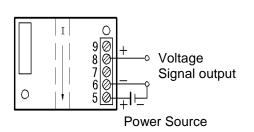

Rated input current: 0-100A DC

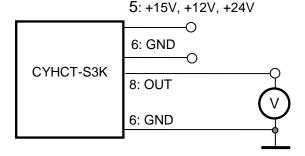
Example 2: CYHCT-S3K-U100A -54, Hall Effect DC Current sensor with

Output signal: 4-20mA DC Power supply: +24V DC

Rated input current: 0-100A DC

DIMENSIONS (mm)

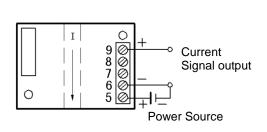


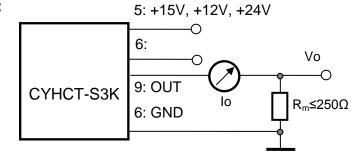

CONNECTIONS

The current carrying cable must pass through the window. The phase of output is the same as that of the current passing the window in the direction of the arrow indicated on the case.

Wiring of Terminals for voltage output:

5: +15V, +12V, +24V Power Supply


6: GND


8: Voltage output

Relation between Input and Output:

Sensor CYHCT-S3K-U100A-34				
Input current (A)	Output voltage (V)			
0	0			
25	1.25			
50	2.5			
75	3.75			
100	5			

Wiring of Terminals for Current Output:

5: +15V, +12V, +24V Power Supply

6: GND 9: Current output

Relation between Input and Output (for $R_m=250 \Omega$):

Sensor CYHCT-S3K-U100A-54					
Input current (A)	Output current Io(mA)	Output voltage Vo (V)			
0	4	1			
25	8	2			
50	12	3			
75	16	4			
100	20	5			

Notes:

- 5. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 6. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screw driver.
- 7. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 8. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer case.

Hall Effect DC Current Sensor CYHCT-L20K

The sensor CYHCT-L20K is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Features and Advantages	Applications
 DC current measurement Output signal option (4-20mA, 0-5V, 0-10V, ±5V) High isolation between primary and secondary circuits No insertion losses Temperature compensation 	 Photovoltaic equipment Battery banks, such as, monitoring load current and charge current, verifying operation Transportation, measuring traction power or auxiliary loads Phase fired controlled heaters Directly connect to PLC Sense motor stalls and short circuits Industrial instrumentation

Specifications

Rated input current (DC)	25A, 30A,40A,50A	,60A,70A,80A,90A,100A,20	00A,30	0A,400A,500A	
Linear measuring range	1.2 times of rated input current				
Output signals	±5V DC, 0-5VDC, 0-10VDC, 0-20mADC, 4-20mADC				
Power supply	+12V DC, +15VD0	C, +24V DC			
Measuring accuracy	Voltage output: ±1	.0% for 25A~40A, ±0.5% fo	r 50A~	-500A	
	4-20mA output: ±1	.0% for 25A~40A, ±0.5% fo	or 50A~	-500A	
	0-20mA output: ±1	.0% for 25A ~ 500A			
Linearity (10% - 100%), 25°C		0.5% for 25A~40A, ±0.2% fo			
	4-20mA output: ±0.5% for 25A~40A, ±0.2% for 50A~500A				
	0-20mA output: ±0.5% for 25A ~ 500A				
Zero offset voltage	±10mV Hysteresis error ±10mV				
Thermal drift of offset voltage	≤300ppm/°C Thermal Drift (-10°C to 50°C) <1000ppm /°C				
Galvanic isolation	3 kV DC, 1 min				
Isolation resistance	≥100MΩ				
Response time	≤10µs for instantaneous output, <1ms DC output				
Frequency Bandwidth (-3dB)	DC – 8kHz				
di/dt following accuracy	50A/µs				
Overload capacity	5 times of rated cu	ırrent			
Current consumption	≤25mA for voltage	output, 25mA + Output cur	rent fo	r current output	
Output load	Voltage output : ≥2kΩ, Current output: ≤250Ω				
Mounting	Panel Screw mounting				
Case style and Window size	L20K with aperture Ø20mm				
Protection of Case	IP20				
Operating temperature	-40°C ~ +85°C Storage temperature -55°C ~ + 100°C				
Relative humidity	≤90%				
MTBF	≥ 100k hours		•		

Definition of Part number:

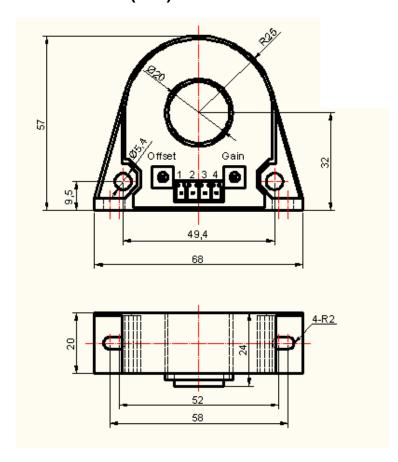
CYHCT	-	L20K	-	М	-	х	n
(1)		(2)		(3)		(4)	(5)

(1)	(2)	(3)	(4)	(5)
Series name	Case style	Rated Input current (M=U/B m)	Output signal	Power supply
CYHCT	L20K	m = 25A, 30A, 40A, 50A,60A,70A,80A,90A,100A, 200A, 300A, 400A, 500A (other input current between 25A-500A)	x=1: instantaneous voltage ±5V DC x=3: 0-5V DC x=4: 0-20mA DC x=5: 4-20mA DC x=8: 0-10V DC	n=2: +12V DC n=3: +15V DC n=4: +24V DC

U: unidirectional; B: bidirectional (please give U or B in the part number)

Example 1: CYHCT-L20K-U100A -34, Hall Effect DC Current sensor with

Output signal: 0-5V DC Power supply: +24V DC

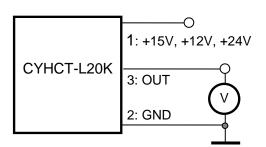

Rated input current: 0-100A DC

Example 2: CYHCT-L20K-U100A -54, Hall Effect DC Current sensor with

Output signal: 4-20mA DC Power supply: +24V DC

Rated input current: 0-100A DC

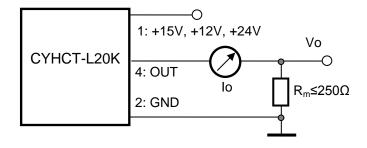
DIMENSIONS (mm)


Dimensions: 68mm x 57mm x 24mm, Aperture: Ø20 mm

CONNECTIONS

The current carrying cable must pass through the window. The phase of output is the same as that of the current passing the window in the direction of the arrow indicated on the case.

Wiring of Terminals for voltage output:



Relation between Input and Output:

Sensor CYHCT-L20K-U100A-34				
Input current (A)	Output voltage (V)			
0	0			
25	1.25			
50	2.5			
75	3.75			
100	5			

1: Power supply; 2: GND; 3: Voltage Output

Wiring of Terminals for Current Output:

1: Power supply; 2: GND; 4: Current Output

Relation between Input and Output (for $R_m=250 \Omega$):

Sensor CYHCT-L20K-U100A-54					
Input current (A)	Output current Io(mA)	Output voltage Vo (V)			
0	4	1			
25	8	2			
50	12	3			
75	16	4			
100	20	5			

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screw driver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer case.

Split Core Hall Effect DC Current Sensor CYHCT-L21K

The sensor CYHCT-L21K is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Features and Advantages	Applications
 DC current measurement Output signal option (4-20mA, 0-5V, 0-10V) High isolation between primary and secondary circuits No insertion losses Split Core, easy installation Temperature compensation 	 Photovoltaic equipment Battery banks, such as, monitoring load current and charge current, verifying operation Transportation, measuring traction power or auxiliary loads Phase fired controlled heaters Directly connect to PLC Sense motor stalls and short circuits Industrial instrumentation

Specifications

Rated input current (DC)	25A,30A,40A,50A,60A,70A,80A,90A,100A,200A,300A,400A,500A				
Linear measuring range	1.2 times of rated input current				
Output signals	0-5VDC, 0-10VDC, 0-20mADC, 4-20mADC				
Power supply	+12V DC, +15VD0	C, +2	4V DC		
Measuring accuracy	Voltage output: ±1	.0%	for 25A~49A, ±0.5% for	r 50A	~500A
			for 25A~49A, ±0.5% fo	r 50A	~500A
	0-20mA output: ±1	.0%	for 25A ~ 500A		
Linearity at 25°C			for 25A~49A, ±0.2% fo		
	4-20mA output: ±0.5% for 25A~49A, ±0.2% for 50A~500A				
	0-20mA output: ±0.5% for 25A ~ 500A				
Zero offset voltage	±10mV Hysteresis error: ±10mV				
Thermal drift of offset voltage	≤300ppm/°C Thermal Drift (-10°C to 50°C): <1000ppm /°C				
Galvanic isolation	3 kV DC, 1 min				
Isolation resistance	≥100MΩ				
Response time	<1ms DC output				
Frequency Bandwidth (-3dB)	DC – 8kHz				
di/dt following accuracy	50A/µs				
Overload capacity	5 times of rated cu	ırren	t		
Current consumption	≤25mA for voltage	outp	out, 25mA + Output curi	rent fo	or current output
Output load	Voltage output : ≥2	2kΩ,	Current output: ≤250Ω		
Mounting	Panel Screw mounting				
Case style and Window size	L21K with aperture Ø21mm				
Protection of Case	IP20				
Operating temperature	-40°C ~ +85°C Storage temperature -55°C ~ + 100°C				
Relative humidity	≤90%				
MTBF	≥ 100k hours				

Definition of Part number:

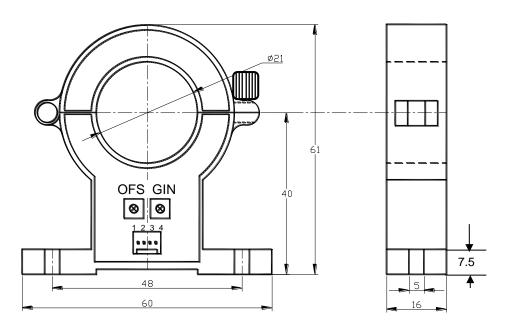
CYHCT	ı	L21K	ı	М	-	х	n	С
(1)		(2)		(3)		(4)	(5)	(6)

(1)	(2)	(3)	(4)	(5)	(6)
Series name	Case style	Rated Input current (M=U/B m)	Output signal	Power supply	Connector
СҮНСТ	L21K	m = 25A, 30A, 40A, 50A, 60A,70A,80A,90A, 100A, 200A, 300A, 400A, 500A (other input current between 25A-500A)	x=3: 0-5V DC x=4: 0-20mA DC x=5: 4-20mA DC x=8: 0-10V DC	n=2: +12V DC n=3: +15V DC n=4: +24V DC	C=M: Molex Connector C=P: Phoenix Connector

U: unidirectional; B: bidirectional (please give U or B in the part number)

Example 1: CYHCT-L21K-U100A -34M, Hall Effect DC Current sensor with Molex connector

Output signal: 0-5V DC Power supply: +24V DC


Rated input current: 0-100A DC

Example 2: CYHCT-L21K-U100A -54P, Hall Effect DC Current sensor with Phoenix connector

Output signal: 4-20mA DC Power supply: +24V DC

Rated input current: 0-100A DC

DIMENSIONS (mm)

GIN: Gain Adjustment

Tel:

Dimensions: 61mm x 60mm x 16mm, Aperture: Ø20 mm

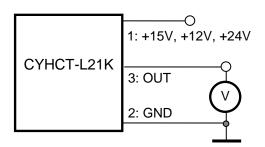
Pin Arrangement

1: Vcc 2: GND

3: Signal Output

4: GND

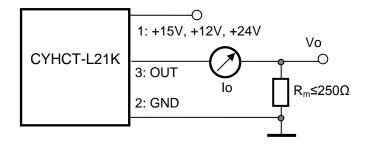
Fax: +49 (0) 8121-25 74 Email: info@chenyang.de Internet: www.chenyang.de


irection

CONNECTIONS

The current carrying cable must pass through the window. The phase of output is the same as that of the current passing the window in the direction of the arrow indicated on the case.

Wiring of Terminals for voltage output:



Relation between Input and Output:

Sensor CYHCT-L21K-U100A-34				
Input current (A)	Output voltage (V)			
0	0			
25	1.25			
50	2.5			
75	3.75			
100	5			

1: Power supply; 2: GND; 3: Voltage Output

Wiring of Terminals for Current Output:

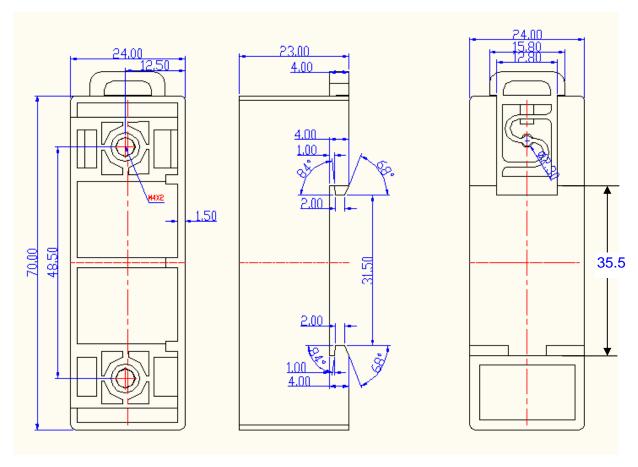
1: Power supply; 2: GND; 3: Current Output

Relation between Input and Output (for $R_m=250 \Omega$):

	Sensor CYHCT-L21K-U100A-54						
Input current (A)	Output current Io(mA)	Output voltage Vo (V)					
0	4	1					
25	8	2					
50	12	3					
75	16	4					
100	20	5					

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screw driver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer case.



DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.

Fax: +49 (0) 8121-25 74 1 Email: info@chenyang.de Internet: www.chenyang.de

Tel:

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom und the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom und the middle of hole is 54.8mm)

Fax: +49 (0) 8121-25 74 Email: info@chenyang.de Internet: www.chenyang.de

Tel:

Hall Effect DC Current Sensor CYHCT-C1TV

This Hall Effect current sensor can be used for measurement of DC current. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data/Input

Primary Nominal DC Current I_r (A)	Primary Current Measuring Range I _p (A)	DC Output Voltage (V)	Part number
25A	0 ~ ±25A	, ,	CYHCT-C1TV-U/B25A-xnC
30A	0 ~ ±30A		CYHCT-C1TV-U/B30A-xnC
40A	0 ~ ±40A	x=0: 0-4V ±1.0%	CYHCT-C1TV-U/B40A-xnC
50A	0 ~ ±50A	x=3: 0-5V ±1.0%	CYHCT-C1TV-U/B50A-xnC
100A	0 ~ ±100A	x=8: 0-10V ±1.0%	CYHCT-C1TV-U/B100A-xnC
200A	0 ~ ±200A		CYHCT-C1TV-U/B200A-xnC
300A	0 ~ ±300A		CYHCT-C1TV-U/B300A-xnC
400A	0 ~ ±400A		CYHCT-C1TV-U/B400A-xnC
500A	0 ~ ±500A		CYHCT-C1TV-U/B500A-xnC
600A	0 ~ ±600A		CYHCT-C1TV-U/B600A-xnC

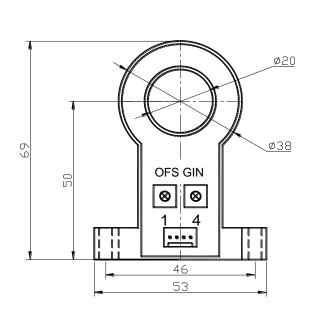
(n=2, *Vcc*= +12VDC; n=3, *Vcc* =+15VDC; n=4, *Vcc* =+24VDC, U: unidirectional, B: bidirectional) (Connector: Molex connector C=M; Phoenix Connector: C=P)

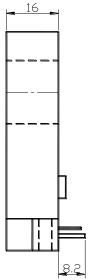
Supply Voltage: V_{cc} =+12V, +15V, +24V \pm 5% Current Consumption I_c < 25mA Isolation Voltage 2.5kV, 50/60Hz, 1min

Electrical Data/Output

V_{out} =0- 4V, 0-5V, 0-10VDC Output Voltage at I_r , T_A =25°C: Output Impedance: $R_{\rm out}$ < 150 Ω $R_{\rm L} > 10 {\rm k}\Omega$ Load Resistor: Accuracy at I_r , $T_A=25^{\circ}$ C, *X* < 1.0% FS Linearity from 0 to I_r , $T_A=25$ °C, E_L <1.0% FS Electric Offset Voltage, T_A =25°C, V_{oe} < 50 mV $V_{om} < \pm 20 \text{mV}$ Magnetic Offset Voltage $(I_r \rightarrow 0)$ Thermal Drift of Offset Voltage, V_{ot} <±1.0mV/°C Thermal Drift (-10°C to 50°C), T.C. $< \pm 0.1\%$ /°C Response Time at 90% of I_P (f=1k Hz) $t_r < 1 \text{ms}$

Frequency Bandwidth (-3dB), Case Material:


 $f_b = DC - 20 \text{ kHz}$ PBT, heat resistant 100°C flame retardant


General Data


Ambient Operating Temperature, Ambient Storage Temperature,

$$T_A = -25$$
°C ~ +85°C
 $T_S = -40$ °C ~ +100°C

PIN Definition and Dimensions

1(+): Vcc 2(G): 0V (GND) 3(O): Output 4(G): 0V GND

OFS: Offset Adjustment GIN: Gain Adjustment

Connection

CYHCTC1TV

GND

Output
GND

Vo

Vo

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-C1TC

This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring 	

Electrical Data

Primary Nominal DC Current I _r (A)	Measuring Range (A)	DC Output Current (mA)	Part number
25	0 ~ ±25A		CYHCT-C1TC-U/B25A-nC
30	0 ~ ±30A		CYHCT-C1TC-U/B30A-nC
40	0 ~ ±40A	4-20 ±1.0%	CYHCT-C1TC-U/B40A-nC
50	0 ~ ±50A		CYHCT-C1TC-U/B50A-nC
100	0 ~ ±100A		CYHCT-C1TC-U/B100A-nC
200	0 ~ ±200A		CYHCT-C1TC-U/B200A-nC
300	0 ~ ±300A		CYHCT-C1TC-U/B300A-nC
400	0 ~ ±400A		CYHCT-C1TC-U/B400A-nC
500	0 ~ ±500A		CYHCT-C1TC-U/B500A-nC
600	0 ~ ±600A		CYHCT-C1TC-U/B600A-nC

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number)

(n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage V_{cc} =+12V, +15V, +24V \pm 5% Current Consumption I_c < 25mA + Output current

Galvanic isolation, 50/60Hz, 1min: 2.5kV Isolation resistance @ 500 VDC $> 500 \text{ M}\Omega$

Accuracy and Dynamic performance data

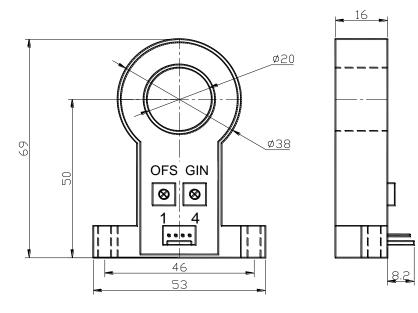
Accuracy at I_n , T_A =25°C <1.0% FS Linearity from 0 to I_n , T_A =25°C, E_L <1.0% FS

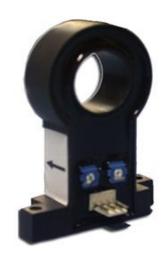
Electric Offset Current, T_A =25°C, 4mA DC or 12mA DC

Thermal Drift of Offset Current, $<\pm 0.005$ mA/°C Response Time at 90% of I_P $t_r < 1$ ms

Load resistance: 80-450 Ω Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$

Case Material: PBT, heat resistant 125°C flame retardant



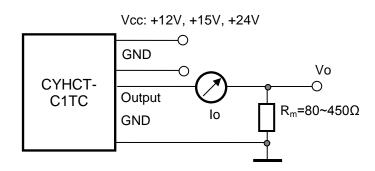

General Data

Ambient Operating Temperature, Ambient Storage Temperature,

$$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$$

 $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions



1(+): Vcc 2(G): GND 3(O): Output 4(G): GND

OFS: Offset Adjustment GIN: Gain Adjustment

Connection

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect DC Current Sensor CYHCT-C2TV

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data/Input

Primary Nominal DC Current I_r (A)	Primary Current Measuring Range I _p (A)	DC Output Voltage (V)	Part number
25A	0 ~ ±25A	• /	CYHCT-C2TV-U/B25A-xnC
30A	0 ~ ±30A		CYHCT-C2TV-U/B30A-xnC
40A	0 ~ ±40A	x=0: 0-4V ±1.0%	CYHCT-C2TV-U/B40A-xnC
50A	0 ~ ±50A	x=3: 0-5V ±1.0%	CYHCT-C2TV-U/B50A-xnC
100A	0 ~ ±100A	x=8: 0-10V ±1.0%	CYHCT-C2TV-U/B100A-xnC
200A	0 ~ ±200A		CYHCT-C2TV-U/B200A-xnC
300A	0 ~ ±300A		CYHCT-C2TV-U/B300A-xnC
400A	0 ~ ±400A		CYHCT-C2TV-U/B400A-xnC
500A	0 ~ ±500A		CYHCT-C2TV-U/B500A-xnC
600A	0 ~ ±600A		CYHCT-C2TV-U/B600A-xnC

(n=2, *Vcc*= +12VDC; n=3, *Vcc* =+15VDC; n=4, *Vcc* =+24VDC, U: unidirectional, B: bidirectional) (Connector: Molex connector C=M; Phoenix Connector: C=P)

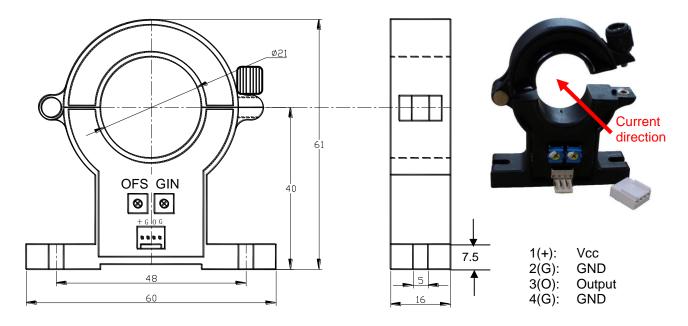
Supply Voltage: V_{cc} =+12V, +15V, +24V± 5%

Current Consumption $I_c < 25 \text{mA}$

Isolation Voltage 2.5kV, 50/60Hz, 1min Output Voltage at I_r , T_A =25°C: V_{out} =0- 4V, 0-5V, 0-10VDC

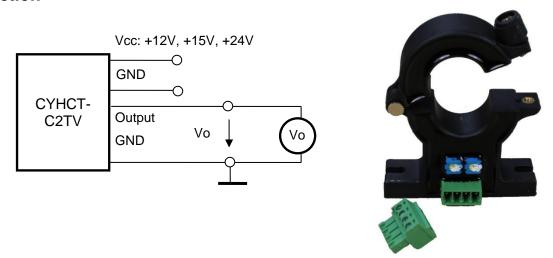
Output Impedance: $R_{\rm out} < 150\Omega$ Load Resistor: $R_{\rm L} > 10 {\rm k}\Omega$

Accuracy


Accuracy at I_r , T_A =25°C,	X<1.0% FS
Linearity from 0 to I_r , $T_A=25$ °C,	<i>E</i> _L <1.0% FS
Electric Offset Voltage, T_A =25°C,	V_{oe} <50mV
Magnetic Offset Voltage $(I_r \rightarrow 0)$	V_{om} <±20mV
Thermal Drift of Offset Voltage,	V_{ot} <±1.0mV/°C
Thermal Drift (-10°C to 50°C),	T.C. < ±0.1% /°C
Response Time at 90% of I_P ($f=1k$ Hz)	t_r < 1ms
Frequency Bandwidth (-3dB),	$f_b = DC - 20 \text{ kHz}$

Internet: www.chenyang.de

Case Material: Ambient Operating Temperature, Ambient Storage Temperature, PBT $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$


PIN Definition and Dimensions

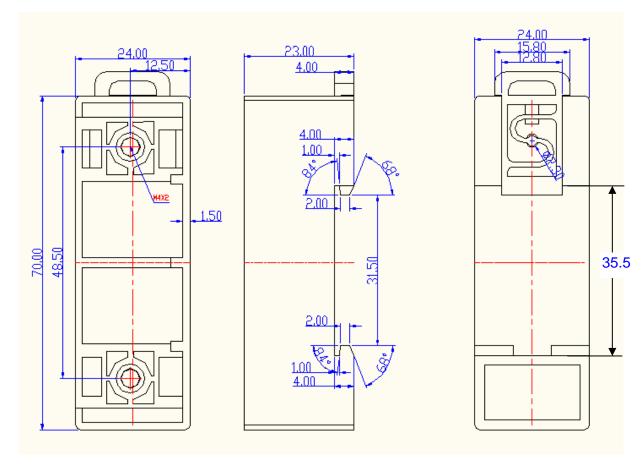
OFS: Offset Adjustment

GIN: Gain Adjustment

Connection

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer



DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.

Tel:

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom und the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom und the middle of hole is 54.8mm)

Split Core Hall Effect DC Current Sensor CYHCT-C2TC

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Split core Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss High Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Current (mA)	Part number
25	0 ~ ±25A		CYHCT-C2TC-U/B25A-nC
30	0 ~ ±30A		CYHCT-C2TC-U/B30A-nC
40	0 ~ ±40A		CYHCT-C2TC-U/B40A-nC
50	0 ~ ±50A		CYHCT-C2TC-U/B50A-nC
100	0 ~ ±100A	4-20 ±1.0%	CYHCT-C2TC-U/B100A-nC
200	0 ~ ±200A	4-20 ±1.0%	CYHCT-C2TC-U/B200A-nC
300	0 ~ ±300A		CYHCT-C2TC-U/B300A-nC
400	0 ~ ±400A	l	CYHCT-C2TC-U/B400A-nC
500	0 ~ ±500A		CYHCT-C2TC-U/B500A-nC
600	0 ~ ±600A		CYHCT-C2TC-U/B600A-nC

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage V_{cc} =+12V, +15V, +24VDC \pm 5% Current Consumption I_c < 25mA + Output current

Galvanic isolation, 50/60Hz, 1min: 2.5kV Isolation resistance @ 500 VDC > 500 M Ω

Accuracy and Dynamic performance data

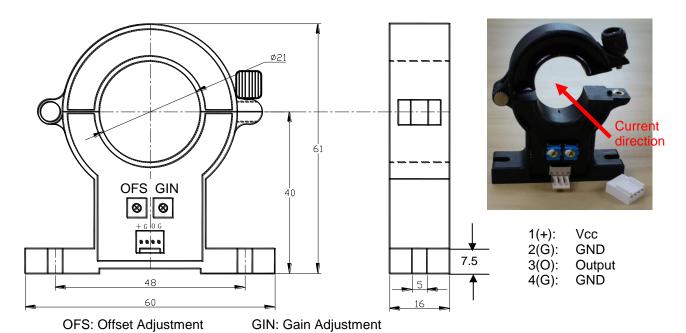
Accuracy at I_r , T_A =25°C, <1.0% FS Linearity from 0 to I_r , T_A =25°C, E_L <1.0% FS

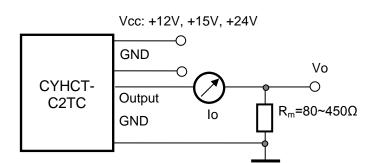
Electric Offset Current, T_A =25°C, 4mA DC or 12mA DC

Thermal Drift of Offset current, $<\pm 0.005$ mA/°C Response Time at 90% of I_P $t_r < 1$ ms Load resistance: $80-450\Omega$

Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$

Case Material: PBT




General Data

Ambient Operating Temperature, Ambient Storage Temperature,

$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

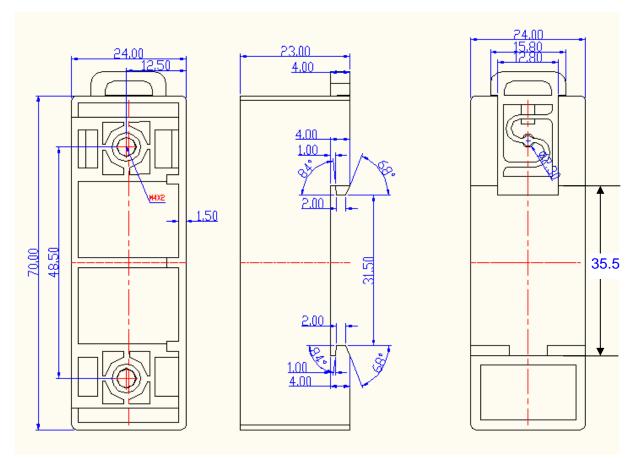
PIN Definition and Dimensions

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Tel:

Fax: +49 (0) 8121-25 74 1 Email: info@chenyang.de Internet: www.chenyang.de



DIN Rail Adapter CY-DRA88

The DIN Rail Adapter CY-DRA88 is designed for mounting the sensor on 35mm DIN Rail. It has the size 70 x 24 x 23mm. The height from bottom to mounting surface is 14.8mm.

Tel:

Fax:

Mounting of Sensors

Sensor with Molex Connector (The distance between the bottom und the middle of hole is 54.8mm)

Sensor with Phoenix Connector (The distance between the bottom und the middle of hole is 54.8mm)

Hall Effect DC Current Sensor CYHCT-C4TV

This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipments Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data/Input

Primary Nominal	Primary Current	DC Output Voltage	Part number
DC Current I_r (A)	Measuring Range $I_p(A)$	(V)	
50A	0 ~ ±50A		CYHCT-C4TV-U/B50A-xn
100A	0 ~ ±100A		CYHCT-C4TV-U/B100A-xn
200A	0 ~ ±200A	x=0: 0-4V ±1.0%	CYHCT-C4TV-U/B200A-xn
300A	0 ~ ±300A	x=3: 0-5V ±1.0%	CYHCT-C4TV-U/B300A-xn
400A	0 ~ ±400A	x=8: 0-10V ±1.0%	CYHCT-C4TV-U/B400A-xn
500A	0 ~ ±500A		CYHCT-C4TV-U/B500A-xn
600A	0 ~ ±600A		CYHCT-C4TV-U/B600A-xn
700A	0 ~ ±700A		CYHCT-C4TV-U/B700A-xn
800A	0 ~ ±800A		CYHCT-C4TV-U/B800A-xn
1000A	0 ~ ±1000A		CYHCT-C4TV-U/B1000A-xn

(n=2, Vcc= +12VDC; n=3, Vcc =+15VDC; n=4, Vcc =+24VDC, U: unidirectional, B: bidirectional)

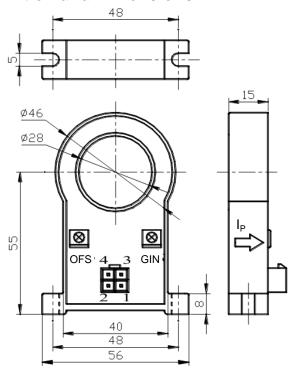
Supply Voltage: V_{cc} =+12V, +15V, +24V± 5% $I_c < 25 \text{mA}$

Current Consumption

Isolation Voltage 2.5kV, 50/60Hz, 1min Output Voltage at I_r , T_A =25°C: V_{out} =0- 4V, 0-5V, 0-10VDC

Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_{\rm L} > 10 {\rm k}\Omega$

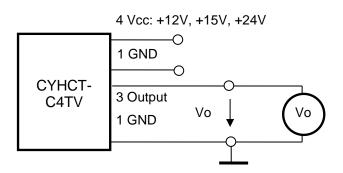
Accuracy


Accuracy at I_r , $T_A=25$ °C,	X<1.0% FS
Linearity from 0 to I_r , T_A =25°C,	E_{L} <1.0% FS
Electric Offset Voltage, T_A =25°C,	V_{oe} < 50 mV
Magnetic Offset Voltage $(I_r \rightarrow 0)$	V_{om} < ± 20 mV
Thermal Drift of Offset Voltage,	V_{ot} <±1.0mV/°C
Thermal Drift (-10°C to 50°C),	T.C. < ±0.1% /°C
Response Time at 90% of I_P (f =1k Hz)	t_r < 1ms
Frequency Bandwidth (-3dB),	$f_b = DC - 20 \text{ kHz}$
Case Material:	PBT

Ambient Operating Temperature, Ambient Storage Temperature,

$$T_A$$
 = -25°C ~ +85°C
 T_S =-40°C ~ +100°C

PIN Definition and Dimensions



1(G): GND 2(G): GND 3(O): Output 4(+): Vcc

OFS: Offset Adjustment GIN: Gain Adjustment

Connection

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-C4TC

This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Current (mA)	Part number
50A	0 ~ ±50A		CYHCT-C4TC-U/B50A-n
100A	0 ~ ±100A		CYHCT-C4TC-U/B100A-n
200A	0 ~ ±200A	4-20 ±1.0%	CYHCT-C4TC-U/B200A-n
300A	0 ~ ±300A		CYHCT-C4TC-U/B300A-n
400A	0 ~ ±400A		CYHCT-C4TC-U/B400A-n
500A	0 ~ ±500A		CYHCT-C4TC-U/B500A-n
600A	0 ~ ±600A		CYHCT-C4TC-U/B600A-n
700A	0 ~ ±700A		CYHCT-C4TC-U/B700A-n
800A	0 ~ ±800A		CYHCT-C4TC-U/B800A-n
1000A	0 ~ ±1000A		CYHCT-C4TC-U/B1000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

Supply Voltage V_{cc} =+12V, +15V, +24VDC \pm 5% Current Consumption I_c < 25mA + Output current

Galvanic isolation, 50/60Hz, 1min: 2.5kV Isolation resistance @ 500 VDC > 500 MΩ

Accuracy and Dynamic performance data

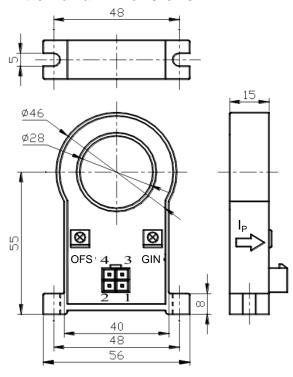
Accuracy at I_n , T_A =25°C, <1.0% FS Linearity from 0 to I_n , T_A =25°C, E_L <1.0% FS

Electric Offset Current, T_A =25°C, 4mA DC or 12mA DC

Thermal Drift of Offset current, $<\pm 0.005 \text{mA/}^{\circ}\text{C}$ Response Time at 90% of I_P $t_r < 1 \text{ms}$

Load resistance: $t_r < t_{rr}$

Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$

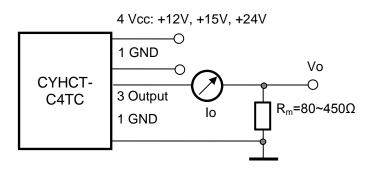

Case Material: PBT

Ambient Operating Temperature, Ambient Storage Temperature,

$$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$$

 $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions



1(G): GND 2(N): GND 3(O): Output 4(+): Vcc

OFS: Offset Adjustment GIN: Gain Adjustment

Connection

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Fax: +49 (0) 8121-25 74 Email: info@chenyang.de Internet: www.chenyang.de

Split Core Hall Effect DC Current Sensor CYHCT-L35K

The sensor CYHCT-L35K is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Features and Advantages	Applications	
 DC current measurement Output signal option (4-20mA, 0-5V, 0-10V) High isolation between primary and secondary circuits Split Core, easy installation Protection against overvoltage Protection against reversed polarity Output protection against electrical disturbances 	 Photovoltaic equipment Battery banks, such as, monitoring load current and charge current, verifying operation Transportation, measuring traction power or auxiliary loads Phase fired controlled heaters Directly connect to PLC Sense motor stalls and short circuits Industrial instrumentation 	

Specifications

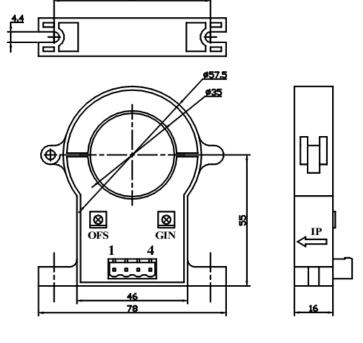
Rated input current (DC)	50A,60A,70A,80A,90A,100A,200A,300A,400A,500A,800A,1000A				
Linear measuring range	1.2 times of rated input current				
Output signals	0-5VDC, 0-10VDC	0, 0-2	OmADC, 4-20mADC		
Power supply	+12V DC, +15VD0				
Measuring accuracy			for 50A~199A, ±0.5% fo		
			for 50A~199A, ±0.5% for	or 20	0A~1000A
	0-20mA output: ±				
Linearity at 25°C			for 50A~199A, ±0.2% f		
			for 50A~199A, ±0.2% for	or 20	0A~1000A
	0-20mA output: ±0				1
Zero offset voltage	±10mV Hysteresis error: ±10mV				
Thermal drift of offset voltage	≤300ppm/°C Thermal Drift (-10°C to 50°C): <1000ppm /°C				<1000ppm /°C
Galvanic isolation	3 kV DC, 1 min				
Isolation resistance	≥100MΩ				
Response time	<1ms DC output				
Frequency Bandwidth (-3dB)	DC – 8kHz				
di/dt following accuracy	50A/µs				
Overload capacity	5 times of rated current				
Current consumption	≤25mA for voltage	outp	out, 25mA + Output curr	ent fo	or current output
Output load	Voltage output : ≥2kΩ, Current output: ≤250Ω				
Mounting	Panel Screw mounting				
Case style and Window size	L35K with aperture Ø35mm				
Protection of Case	IP20				
Operating temperature	-40°C ~ +70°C Storage temperature -40°C ~ + 85°C				°C ~ + 85°C
Relative humidity	≤90%				
MTBF	≥ 100k hours				

Definition of Part number:

СҮНСТ	ı	L35K	-	М	-	х	n	С
(1)		(2)		(3)		(4)	(5)	(6)

(1)	(2)	(3)	(4)	(5)	(6)
Series name	Case style	Rated Input current (M=U/B m)	Output signal	Power supply	Connector
СҮНСТ	L35K	m = 50A, 60A,70A,80A, 90A, 100A, 200A, 300A, 400A, 500A, 800A,1000A (other input current between 50A-1000A)	x=3: 0-5V DC x=4: 0-20mA DC x=5: 4-20mA DC x=8: 0-10V DC	n=2: +12V DC n=3: +15V DC n=4: +24V DC	C=M: Molex Connector C=P: Phoenix Connector

U: unidirectional; B: bidirectional (please give U or B in the part number)


Example 1: CYHCT-L35K-U100A -34M, Hall Effect DC Current sensor with Molex connector

Output signal: 0-5V DC
Power supply: +24V DC
Rated input current: 0-100A DC

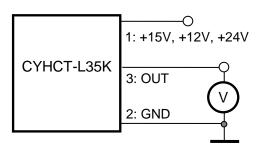
Example 2: CYHCT-L35K-U100A -54P, Hall Effect DC Current sensor with Phoenix connector

Output signal: 4-20mA DC Power supply: +24V DC Rated input current: 0-100A DC

DIMENSIONS (mm)

OFS: Offset Adjustment GIN: Gain Adjustment Dimensions: 83.75mm x 78mm x 16mm, Aperture: Ø35 mm

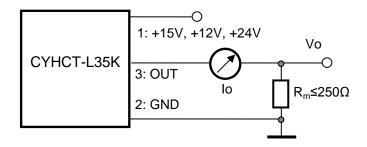
Pin Arrangement


1: Vcc 2: GND 3: Signal Output 4: GND

CONNECTIONS

The current carrying cable must pass through the window. The phase of output is the same as that of the current passing the window in the direction of the arrow indicated on the case.

Wiring of Terminals for voltage output:



Relation between Input and Output:

0 01/1107	10=14114004 04		
Sensor CYHCT-L35K-U100A-34			
Input current (A) Output voltage (V			
0	0		
25	1.25		
50	2.5		
75	3.75		
100	5		

1: Power supply; 2: GND; 3: Voltage Output

Wiring of Terminals for Current Output:

1: Power supply; 2: GND; 3: Current Output

Relation between Input and Output (for $R_m=250 \Omega$):

Sensor CYHCT-L35K-U100A-54					
Input current (A)	Output current Io(mA)	Output voltage Vo (V)			
0	0 4				
25	8	2			
50	12	3			
75	16	4			
100	20	5			

Notes:

- Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screw driver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer case.

Hall Effect DC Current Sensor CYHCT-D6V

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

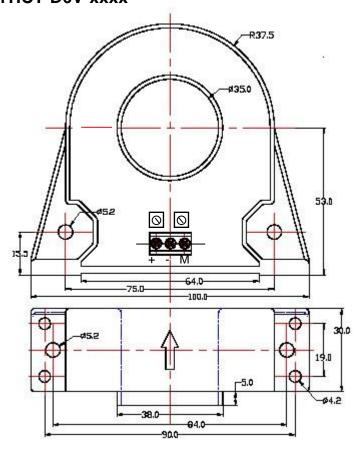
Primary Nominal	Measuring Range (A)	DC Output Voltage	Part number
DC Current I_r (A)		(V)	
50	0 ~ ±50A		CYHCT-D6V-U/B50A-xn
100	0 ~ ±100A		CYHCT-D6V-U/B100A-xn
200	0 ~ ±200A	x=0: 0-4V ±1.0%	CYHCT-D6V-U/B200A-xn
300	0 ~ ±300A	x=3: 0-5V ±1.0%	CYHCT-D6V-U/B300A-xn
400	0 ~ ±400A	x=8: 0-10V ±1.0%	CYHCT-D6V-U/B400A-xn
500	0 ~ ±500A		CYHCT-D6V-U/B500A-xn
600	0 ~ ±600A		CYHCT-D6V-U/B600A-xn
700	0 ~ ±700A		CYHCT-D6V-U/B700A-xn
800	0 ~ ±800A		CYHCT-D6V-U/B800A-xn
900	0 ~ ±900A		CYHCT-D6V-U/B900A-xn
1000	0 ~ ±1000A		CYHCT-D6V-U/B1000A-xn

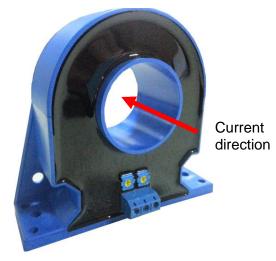
(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=2, Vcc= +12VDC ±5%; n=3, Vcc =+15VDC ±5%; n=4, Vcc =+24VDC±5%)

 V_{cc} =+12V, +15V, +24V \pm 5% Supply Voltage: **Current Consumption** I_c < 25mA Isolation Voltage 2.5kV, 50/60Hz, 1min Output Voltage at I_r , T_A =25°C: V_{out} =0- 4V, 0-5V, 0-10VDC Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_{\rm I} > 10 \rm k\Omega$ Accuracy at I_r , T_A =25°C, X < 1.0% FS Linearity from 0 to I_r , T_A =25°C, E_L <1.0% FS Electric Offset Voltage, T_A =25°C, V_{oe} < 50 mV Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 20 \text{mV}$ Thermal Drift of Offset Voltage, V_{ot} <±1.0mV/°C Thermal Drift (-10°C to 50°C), $T.C. < \pm 0.1\% / ^{\circ}C$ Response Time at 90% of I_P (f=1k Hz) $t_r < 1 \text{ms}$ Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$

Case Material:

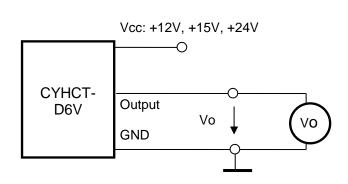
PBT




Ambient Operating Temperature, Ambient Storage Temperature,

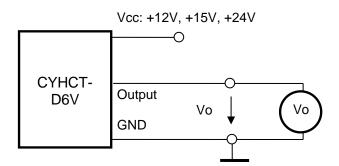
 T_A = -25°C ~ +85°C T_S =-40°C ~ +100°C

PIN Definition and Dimensions


CYHCT-D6V-xxxx

Terminal Arrangement


1(+): Vcc 2(-): GND 3(M): Output


CYHCS-D6V-xxxx

Terminal Arrangement

1: Vcc 2: GND 3: Output

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Tel:

Fax: +49 (0) 8121-25 74 1 Email: info@chenyang.de Internet: www.chenyang.de

Hall Effect DC Current Sensor CYHCT-D6C

This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current I_r (A)	Measuring Range (A)	DC Output Current (mA)	Part number
50	0 ~ ±50A		CYHCT-D6C-U/B50A-n
100	0 ~ ±100A		CYHCT-D6C-U/B100A-n
200	0 ~ ±200A		CYHCT-D6C-U/B200A-n
300	0 ~ ±300A		CYHCT-D6C-U/B300A-n
400	0 ~ ±400A		CYHCT-D6C-U/B400A-n
500	0 ~ ±500A	4-20 ±1.0%	CYHCT-D6C-U/B500A-n
600	0 ~ ±600A		CYHCT-D6C-U/B600A-n
700	0 ~ ±700A		CYHCT-D6C-U/B700A-n
800	0 ~ ±800A		CYHCT-D6C-U/B800A-n
900	0 ~ ±900A		CYHCT-D6C-U/B900A-n
1000	0 ~ ±1000A		CYHCT-D6C-U/B1000A-n

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

Supply Voltage V_{cc} =+12V, +15V, +24VDC ± 5% **Current Consumption** I_c < 25mA + Output current

Galvanic isolation, 50/60Hz, 1min: 2.5kV $> 500 \text{ M}\Omega$ Isolation resistance @ 500 VDC

Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C (without offset), <1.0% Linearity from 0 to I_r , $T_A=25$ °C, E_L <1.0% FS Electric Offset Current, T_A =25°C, 4mA DC or 12mA DC Thermal Drift of Offset Current, <±0.005mA/°C Response Time at 90% of I_P $t_r < 1 \text{ms}$ Load resistance: $80-450\Omega$ Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$ **PBT**

Tel:

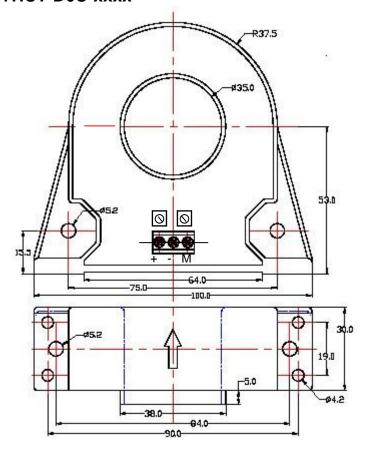
Fax:

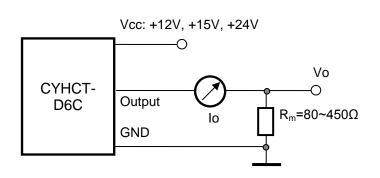
+49 (0) 8121-25 74 100

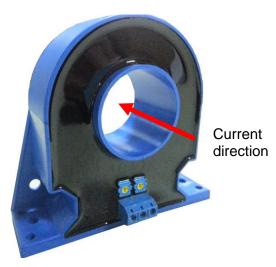
+49 (0) 8121-25 74 101

Email: info@chenyang.de

Internet: www.chenyang.de

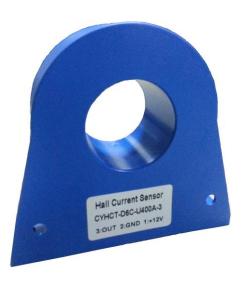

Case Material:

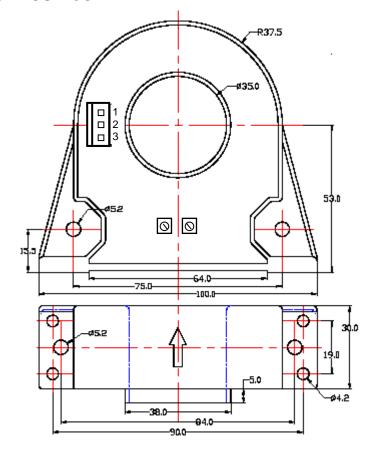

Ambient Operating Temperature, Ambient Storage Temperature,


 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

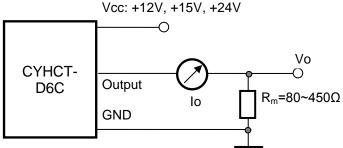
PIN Definition and Dimensions

CYHCT-D6C-xxxx




Terminal Arrangement

1(+): Vcc 2(-): GND 3(M): Output


CYHCS-D6C-xxxx

Terminal Arrangement

1: Vcc 2: GND 3: Output

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Tel:

Split Core Hall Effect DC Current Sensor CYHCT-C3TV

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data/Input

Primary Nominal	Primary Current	DC Output Voltage	Part number
DC Current I_r (A)	Measuring Range $I_{\rho}(A)$	(V)	
50A	0 ~ ±50A		CYHCT-C3TV-U/B50A-xnC
100A	0 ~ ±100A		CYHCT-C3TV-U/B100A-xnC
200A	0 ~ ±200A	x=0: 0-4V ±1.0%	CYHCT-C3TV-U/B200A-xnC
300A	0 ~ ±300A	x=3: 0-5V ±1.0%	CYHCT-C3TV-U/B300A-xnC
400A	0 ~ ±400A	x=8: 0-10V ±1.0%	CYHCT-C3TV-U/B400A-xnC
500A	0 ~ ±500A		CYHCT-C3TV-U/B500A-xnC
800A	0 ~ ±800A		CYHCT-C3TV-U/B800A-xnC
1000A	0 ~ ±1000A		CYHCT-C3TV-U/B1000A-xnC
1500A	0 ~ ±1500A		CYHCT-C3TV-U/B1500A-xnC
2000A	0 ~ ±2000A		CYHCT-C3TV-U/B2000A-xnC

(n=2, *Vcc*= +12VDC; n=3, *Vcc* =+15VDC; n=4, *Vcc* =+24VDC, U: unidirectional, B: bidirectional) (Connector: Molex connector C=M; Phoenix Connector: C=P)

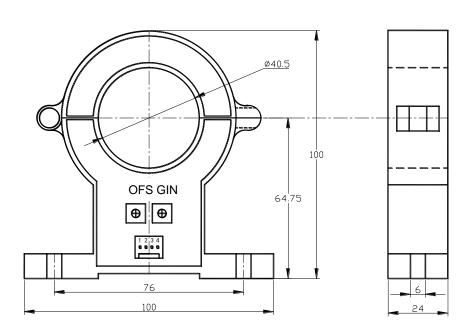
Supply Voltage: V_{cc} =+12V, +15V, +24V± 5%

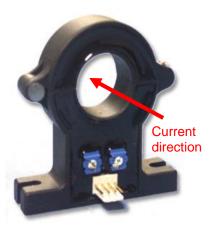
Current Consumption $I_c < 25 \text{mA}$

Isolation Voltage 5kV, 50/60Hz, 1min

Electrical Data/Output

Output Voltage at I_r , T_A =25°C:	V _{out} =0- 4V, 0-5V, 0-10VDC
Output Impedance:	$R_{\rm out}$ < 150 Ω
Load Resistor:	$R_{L} > 10 \text{k}\Omega$
Accuracy at I_r , $T_A=25$ °C,	X<1.0% FS
Linearity from 0 to I_r , $T_A=25$ °C,	<i>E_L</i> <1.0% FS
Electric Offset Voltage, T_A =25°C,	V_{oe} <50mV
Magnetic Offset Voltage $(I_r \rightarrow 0)$	V_{om} <±20mV
Thermal Drift of Offset Voltage,	V_{ot} <±1.0mV/°C
Thermal Drift (-10°C to 50°C),	T.C. < ±0.1% /°C
Response Time at 90% of I_P (f =1k Hz)	t_r < 1ms
Frequency Bandwidth (-3dB),	$f_b = DC - 20 \text{ kHz}$
Case Material:	PBT

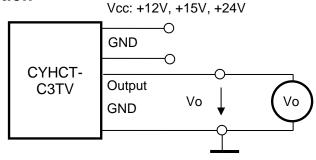

Internet: www.chenyang.de



Ambient Operating Temperature, Ambient Storage Temperature,

$$T_A$$
 = -25°C ~ +85°C
 T_S =-40°C ~ +100°C

PIN Definition and Dimensions



1(+): Vcc 2(G): GND 3(O): Output 4(G): GND

OFS: Offset Adjustment

GIN: Gain Adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Split Core Hall Effect DC Current Sensor CYHCT-C3TC

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current I_r (A)	Measuring Range (A)	DC Output Current (mA)	Part number (P/N)
50	0 ~ ±50A		CYHCT-C3TC-U/B50A-nC
100	0 ~ ±100A		CYHCT-C3TC-U/B100A-nC
200	0 ~ ±200A		CYHCT-C3TC-U/B200A-nC
300	0 ~ ±300A		CYHCT-C3TC-U/B300A-nC
400	0 ~ ±400A	4-20 ±1.0%	CYHCT-C3TC-U/B400A-nC
500	0 ~ ±500A		CYHCT-C3TC-U/B500A-nC
800	0 ~ ±800A		CYHCT-C3TC-U/B800A-nC
1000	0 ~ ±1000A		CYHCT-C3TC-U/B1000A-nC
1500	0 ~ ±1500A		CYHCT-C3TC-U/B1500A-nC
2000	0 ~ ±2000A		CYHCT-C3TC-U/B2000A-nC

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

(Connector: Molex connector C=M; Phoenix Connector: C=P)

Supply Voltage V_{cc} =+12V, +15V, +24V \pm 5% Current Consumption I_c < 25mA + Output current

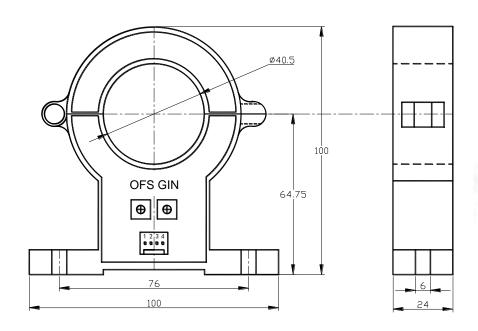
Galvanic isolation, 50/60Hz, 1min: 5kV Isolation resistance @ 500 VDC > 500 MΩ

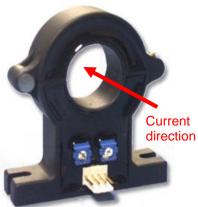
Accuracy and Dynamic performance data

Accuracy at I_r , T_A =25°C, <1.0% FS Linearity from 0 to I_r , T_A =25°C, E_L <1.0% FS

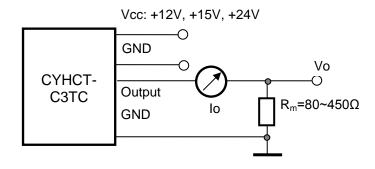
Electric Offset Current, T_A =25°C, 4mA DC or 12mA DC Thermal Drift of Offset Current, +20.005mA/°C

Response Time at 90% of I_P $t_r < 1$ ms Load resistance: 80-450 Ω Frequency Bandwidth (-3dB), $f_b = DC - 20$ kHz


Case Material: PBT, heat resistant 100°C flame retardant



Ambient Operating Temperature, Ambient Storage Temperature,


$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

1(+): Vcc 2(G): GND 3(O): Output 4(G): GND

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-K2V

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current <i>I_r</i> (A)	Measuring Range (A)	DC Output Voltage (V)	Part number
300	0 ~ ±300A		CYHCT-K2V-U/B300A-xn
400	0 ~ ±400A		CYHCT-K2V-U/B400A-xn
500	0 ~ ±500A	x=0: 0-4V ±1.0%	CYHCT-K2V-U/B500A-xn
600	0 ~ ±600A	x=3: 0-5V ±1.0% x=8: 0-10V ±1.0% (x=8 for for power supply of +15VDC and +24VDC)	CYHCT-K2V-U/B600A-xn
700	0 ~ ±700A		CYHCT-K2V-U/B700A-xn
800	0 ~ ±800A		CYHCT-K2V-U/B800A-xn
900	0 ~ ±900A		CYHCT-K2V-U/B900A-xn
1000	0 ~ ±1000A		CYHCT-K2V-U/B1000A-xn
1100	0 ~ ±1100A		CYHCT-K2V-U/B1100A-xn
1300	0 ~ ±1300A		CYHCT-K2V-U/B1300A-xn
1500	0 ~ ±1500A		CYHCT-K2V-U/B1500A-xn

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=2, Vcc= +12VDC ±5%; n=3, Vcc =+15VDC ±5%; n=4, Vcc =+24VDC±5%)

Supply Voltage: V_{cc} =+12V, +15V, +24V \pm 5% $I_c < 25 \text{mA}$ **Current Consumption** 2.5kV, 50/60Hz, 1min Isolation Voltage Output Voltage at I_r , T_A =25°C: $V_{\text{out}} = 0-4\text{V}, 0-5\text{V}, 0-10\text{VDC}$ Output Impedance: $R_{\rm out}$ < 150 Ω Load Resistor: $R_{\rm L} > 20 {\rm k}\Omega$ Accuracy at I_r , $T_A=25^{\circ}$ C, X < 1.0% FS Linearity from 0 to I_r , $T_A=25^{\circ}$ C E_L <1.0% FS

Accuracy at I_r , T_A =25°C, X < 1.0% FS
Linearity from 0 to I_r , T_A =25°C, $E_L < 1.0\%$ FS
Electric Offset Voltage, T_A =25°C, $V_{oe} < 50$ mV
Magnetic Offset Voltage ($I_r \rightarrow 0$) $V_{om} < \pm 20$ mV
Thermal Drift of Offset Voltage, $V_{ol} < \pm 1.0$ mV/°C
Response Time at 90% of I_P (f=1k Hz) $V_{ol} < 1$ ms
Frequency Bandwidth (-3dB), $V_{ol} < 1$ ms
Case Material: PBT

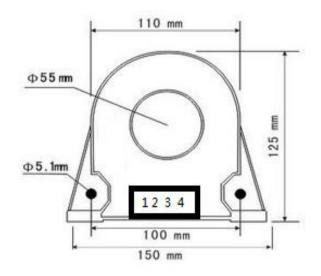
Tel:

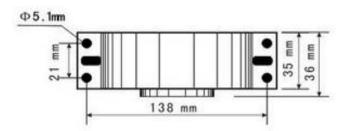
Fax:

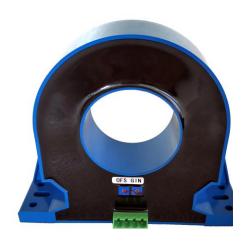
+49 (0) 8121-25 74 100

+49 (0) 8121-25 74 101

Email: info@chenyang.de

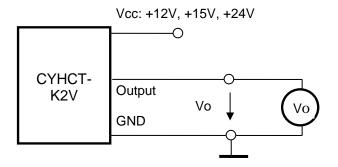

Internet: www.chenyang.de




Ambient Operating Temperature, Ambient Storage Temperature,

$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions



Terminal Arrangement:

- 1: Vcc (+12, +15V, +24VDC)
- 2: NC (not connect)
- 3: OUTPUT
- 4: GND

OFS: Offset adjustment GIN: Gain adjustment

Connection

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Hall Effect DC Current Sensor CYHCT-K2C

This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Using split cores and easy mounting Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal DC Current I_r (A)	Measuring Range (A)	DC Output Current	Part number
DC Current $I_r(A)$		(mA)	
300	0 ~ ±300A		CYHCT-K2C-U/B300A-xn
400	0 ~ ±400A		CYHCT-K2C-U/B400A-xn
500	0 ~ ±500A		CYHCT-K2C-U/B500A-xn
600	0 ~ ±600A		CYHCT-K2C-U/B600A-xn
700	0 ~ ±700A		CYHCT-K2C-U/B700A-xn
800	0 ~ ±800A	4-20 ±1.0%	CYHCT-K2C-U/B800A-xn
900	0 ~ ±900A		CYHCT-K2C-U/B900A-xn
1000	0 ~ ±1000A		CYHCT-K2C-U/B1000A-xn
1100	0 ~ ±1100A		CYHCT-K2C-U/B1100A-xn
1300	0 ~ ±1300A		CYHCT-K2C-U/B1300A-xn
1500	0 ~ ±1500A		CYHCT-K2C-U/B1500A-xn

(U: unidirectional input current; B: bidirectional input current, please give U or B in Part number) (n=3, Vcc= +12VDC ±5%; n=4, Vcc =+15VDC ±5%; n=5, Vcc =+24VDC±5%)

Supply Voltage V_{cc} =+12V, +15V, +24VDC \pm 5% Current Consumption I_c < 25mA + Output current

Galvanic isolation, 50/60Hz, 1min: 2.5kV Isolation resistance @ 500 VDC > 500 M Ω

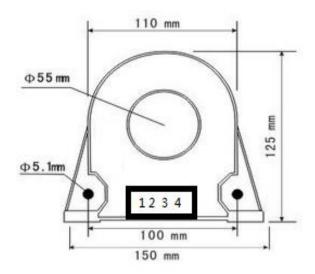
Accuracy and Dynamic performance data

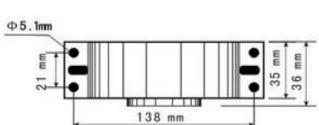
Accuracy at I_r , T_A =25°C (without offset), <1.0% Linearity from 0 to I_r , T_A =25°C, E_L <1.0% FS

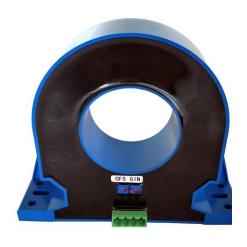
Electric Offset Current, T_A =25°C, 4mA DC or 12mA DC Thermal Drift of Offset Current, $<\pm0.005$ mA/°C

Response Time at 90% of I_P $t_r < 1 ms$ Load resistance: 80-250 Ω

Frequency Bandwidth (-3dB), $f_b = DC - 20 \text{ kHz}$


Case Material: PBT



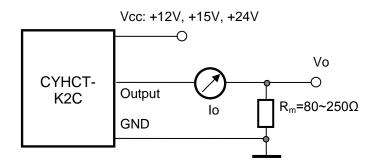

Ambient Operating Temperature, Ambient Storage Temperature,

$T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

PIN Definition and Dimensions

Terminal Arrangement:

1: Vcc (+12, +15V, +24VDC)


2: NC (not connect)

3: OUTPUT

4: GND

OFS: Offset adjustment GIN: Gain adjustment

Connection

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Tel: +49 (0) 8121-25 74 100 Fax: +49 (0) 8121-25 74 101