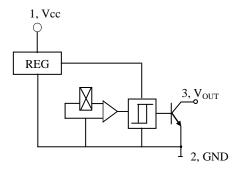


CYD3141E Hall- Effekt Schalter IC

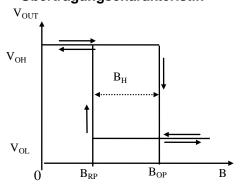
Der CYD3141E Hall-Effekt Schalter mit integrierter basiert auf dem Hall-Effekt Prinzip und der monolithischen Halbleitertechnologie, welcher einen Spannungsregler, einen Hallspannungsgenerator, einen Differentialverstärker, einen Schmitt-Schalter und einen offenen Kollektorausgang auf einem einzelnen Silikonchip vereint. Der IC kann das Ausgangsignal des Magnetfeldes in ein digitales Spannungsausgangsignal umwandeln.


EIGENSCHAFTEN

- geringe Größe
- hohe Empfindlichkeit
- kurze Antwortzeit
- gutes Temperaturverhalten
- hohe Genauigkeit
- exzellente
 Zuverlässigkeit

TYPISCHE ANWENDUNGEN

- kontaktlose Schalter
- Eigenantriebszündung
- Bremse ICs
- Positionskontrolle
- Drehzahlerkennung
- sichere Alarmanlagen
- Textil-Kontrollsysteme


Funktionelles Blockdiagramm

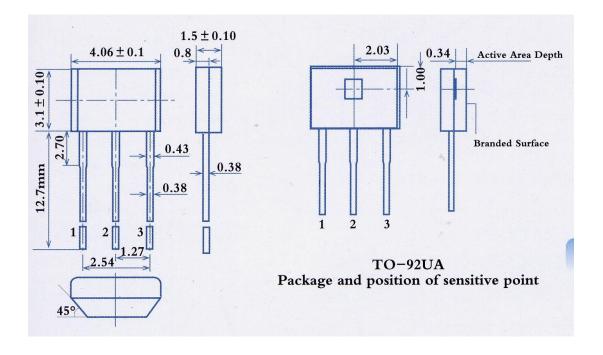
ABSOLUTE GRENZWERTE

Parameter	Symbol	Wert	Einheit	
Versorgungsspannung	Vcc	28	V	
Ausgangsruhespannung	Vo	28	V	
Ausgangsstrom	lo	25	mA	
Betriebstemperaturbereich	T _A	-40~85	°C	
Lagerungstemperaturbereich	Ts	-65~150	°C	

Magnetisch-Elektrische Übertragungscharakteristik

ELEKTRISCHE EIGENSCHAFTEN

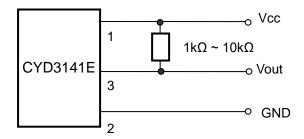
Parameter	Toothodingungon	Symbol	Wert			Ciph oit
	Testbedingungen		Min	Тур	Max	Einheit
Versorgungsspannung	Vcc=4.5V∼24V	V _{CC}	4.5	-	24	V
Ausgangsspannung (low)	Vcc=4.5v, Vo=24V Io=20mA, B≥B _{OP}	V _{OL}	-	175	400	mV
Leckstrom am Ausgang	Vo=24V, B <b<sub>RP</b<sub>	I _{OH}	-	<1.0	10	μΑ
Versorgungsstrom	Vcc=24V, Vo offener	lcc	-	3.0	9.0	mA
	Kollektorausgang					
Ausgangs-Anstiegszeit	Vcc=12V, R _L =820Ω C _L =20pF	tr	-	0.2	2.0	μS
Ausgangs-Abfallzeit	νου-12ν, Νι-02012 - ΟΙ-20β1	tf	-	0.18	2.0	μS


http://www.cy-sensors.com

Magnet Maße und Stiftanordnung (in mm)

Parameter		Min (mT) Typ (mT)		Max (mT)	
Arbeitspunkt (B _{OP})	T _A =25°C	5.0	10.0	16.0	
	Voller Betriebstemperaturbereich	3.0	10.0	17.5	
Freigabepunkt (B _{RP})	T _A =25°C	1.0	4.5	13.0	
	Voller Betriebstemperaturbereich	1.0	4.5	14.5	
Hysterese (B _H)	T _A =25°C	2.0	5.5	8.0	
	Voller Betriebstemperaturbereich	2.0	5.5	8.0	

Maße und Stiftanordnung (Einheit: mm)



Stiftanordnung: 1. Versorgungsspannung, 2. Erdung, 3. Ausgang

Verbindung:

Dieser Sensor besitzt eine OC Ausgangsspannung. Daher ist es notwendig, einen Pull-up Widerstand mit den Werten $1k\Omega$ bis $10k\Omega$ zwischen der Versorgungsspannung Vcc und dem Ausgang zu verbinden.

Hinweis:

- Es ist möglich das äußere mechanische Spannungen den Arbeitspunkt und den Freigabepunkt der Hall-Effekt Schaltung beeinflussen. Daher sollten mechanische Spannungen während der Fertigung möglichst gering gehalten werden.
- Beachten Sie die Löttemperatur (<260°C) im Stift. Verringern Sie diese für eine kurze Zeit (<3s), um eine gute Lötqualität zu gewährleisten.

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121- 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com