

Universaler Hall-Effekt Sensor CY9802A

Anwendungen

- DC bürstenlose Motoren
- CD-/CD-ROM-/VCD-/DVD- Laufwerke
- Beschichtungsdetektor
- Geschwindigkeitsmessung
- Hausanwendungen
- Haussicherheit etc.

Eigenschaften

- Betriebsspannung von 2.5V bis 18V
- eingebaute dynamische Offset-Kompensation
- geringe Größe
- Hohe Ausgewogenheit und niedrige Thermaldrift der magnetischen Detektion
- Ausgang mit Pull-up Widerstand

Bestellinformationen

• CYD9802A-S/PKD:SOT23

Absolute Grenzwerte (T_A=25°C)

	Chen Yang Technologies GmbH & Co. KG
--	--------------------------------------

Gehäusetyp	
P/N: CYD9802A-S	3
SOT23	3
VDD 1	
XXX	3 GND
OUT 2	
1: VDD/Versorgun 2: OUT/Ausgang	gsspannung

3: GND/Ground

Parameter	Symbol	Bedingungen	Wertung	Einheit
Maximale Versorgungsspannung	V_{DDMAX}		18	V
Erlaubte Leistungsabgabe	P_{D}	SOT-23	300	mW
Betriebstemperatur	T _A		-40~+125	°C
Lagerungstemperatur	Ts		-50~+150	°C
Maximale Ausgangsstrom	I _{OMAX}		25	mA

Elektrische Eigenschaften (T_A=25°C, V_{DD}=12VDC)

Eigenschaften	Symbol	Testbedingungen	Min.	Тур.	Max.	Einheit
Versorgungsspannung	V_{DD}		2.5		18	V
Abfallspannung am Ausgang	$V_{DS(ON)}$	@I _{OUT} = 15mA		0.3	0.5	V
Durchbruchspannung am	V_{BV}		18			V
Ausgang						
Versorgungsstrom	I_{DD}	Ausgang offen		6	8	mA
Interner Pull-Up Widerstand	R_L		6		14	kΩ

Magnetische Eigenschaften (T_A=25°C, V_{DD}=12VDC)

Eigenschaften	Symbol	Testbedingungen	Min.	Тур.	Max.	Einheit
Arbeitspunkt	B_OP		-	15	35	G
Freigabepunkt	B_RP		-35	-15	-	G
Hysteresis	B _{HYS}		20	30	60	G

Allgemeine Spezifikationen

Der CYD9802A wurde für magnetisches Betätigen entwickelt und verwendet dabei ein zweipoliges Magnetfeld. Die integrierte dynamische Offset-Kompensation der Vorverstärkerstufe ist in der Lage Magnetfeld präzise, optimal und symmetrisch zu detektieren. Dieser Hall-Effekt IC ist geeignet für Anwendungen in DC bürstenlosen Lüftern. Der Versorgungsspannungsbereich liegt zwischen 2.5 und 18V, der maximale Ausgangsstrom liegt bei 25mA.

Dieser Hall-Effekt-Schalter IC integriert den Sensor, einen Vorverstärker mit dynamischer Offsetkompensation und einen Hysterese Komparator in einem einzelnen Chip. In Abbildung 1 ist das Blockdiagramm zum Aufbau dargestellt.

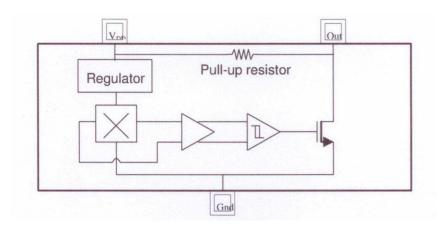
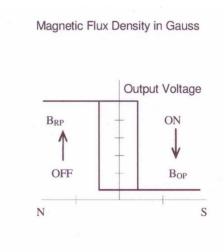
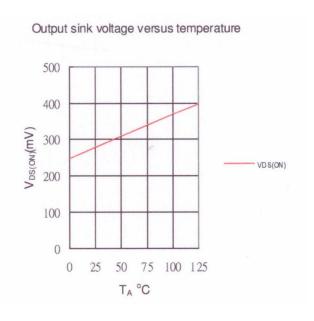
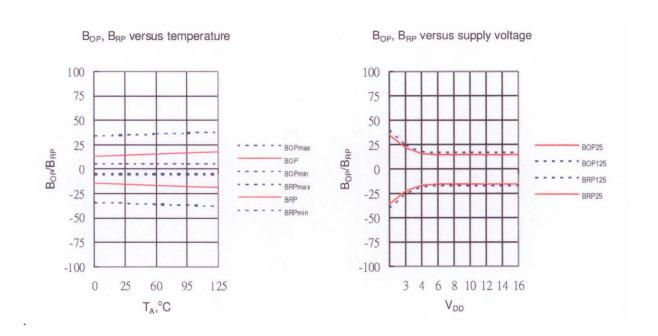
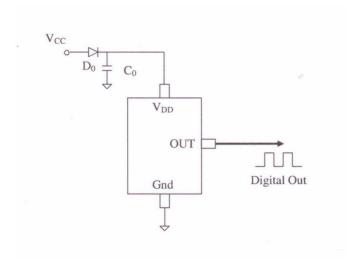
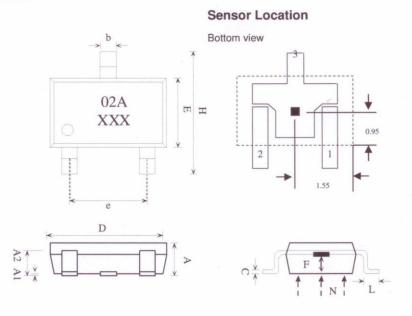





Abb. 1 Funktionelles Blockdiagramm



Anwendungsschaltung:


Hinweis:

D0: allgemeine Diode

C0: Entkopplungs-Kondensator 1µF (empfohlen)

Package Outline

SYMBOLS	DIMENSIONS IN MILLIMETERS(mm)				
	MIN	NOM	MAX		
A	1.00	1.10	1.30		
A1	0.00	-	0.10		
A2	0.70	0.80	0.90		
b	0.35	0.40	0.50		
С	0.10	0.15	0.25		
D	2.70	2.90	3.10		
Е	1.40	1.80	2.00		
F	0.35	0.50	0.65		
Н	2.60	2.8	3.00		
e	1.7	1.9	2.1		
L	0.20	-	-		