

Selbsteinstellender Halleffekt Zahnradsensor IC CYGTS9801

Der Sensor CYGTS9801 ist ein anspruchsvoller Hall-Effekt Zahnradsensor IC, mit einem auf dem Chip verbauten 12-Bit A/D Wandler und einer Logik, die eine digitale Abtastungs- und Halteschaltung darstellt. Ein separater 6-Bit-D/A-Wandler stellt eine feste Hysterese ein. Der Sensor hat keine Chopper-Verzögerung. Er verwendet eine einzelne Hall-Platte, die resistent gegen rotierende Ausrichtungsprobleme ist. Der Bias-Magnet kann 1000GS bis 4000Gs aufweisen. Wird das Signal abgetastet, erkennt die Logik eine Erhöhung oder Verringerung der Flussdichte. Der Ausgang wird auf BOP eingeschaltet, nachdem der magnetische Fluss den Höhepunkt erreicht und um einen Betrag gleich der Hysterese gesenkt hat. Ebenso wird der Ausgang auf BRP ausgeschaltet, nachdem der Fluss den Minimalwert erreicht und um einen Zusatzbetrag gleich der Hysterese zugenommen hat.

Eigenschaften

- Hohe Empfindlichkeit
- Digitales Ausgangssignal
- NULL-Drehzahlerfassung
- Kurzschluss-Schutz
- Unempfindlich gegen Orientierung
- Breiter Betriebsspannungsbereich
- Selbsteinstellender magnetischer Bereich
- Integrierter 12 Bit A/D-Wandler
- Hoher Drehgeschwindigkeitsbetrieb
- Keine Chopper-Verzögerungs-Anwendungen
- RoHS-konform

Anwendungen

Automobile und Schwerkraftlastwagen:

- Nockenwellen- und Kurbelwellengeschwindigkeit und -position
- Datenübertragungsgeschwindigkeit
- Tachometer
- Antriebssteuerung und Blockierschutz

Industrielle Anwendung:

- Geschwindigkeit eines Kettenrads
- Geschwindigkeit und Hub des Kettentransportbands
- Melder einer Abstellvorrichtung
- Hochgeschwindigkeits- und günstige Schalter
- Tachometer, Zähler.

Magnetische Spezifikationen

DC Betriebsparameter T_A=-40°C bis 150°C, VDD=4.0V bis 24V (sofern nicht anders angegeben)

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Rück-Bias-Bereich	B _{Bias}	Betrieb	-30		4000	Gs
Linearer Bereich		V _{DD} =12V	500		5000	Gs
Hysteresis	B _{hys}		10		80	Gs

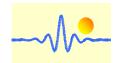
10Gs = 1mT

http://www.cy-sensors.com

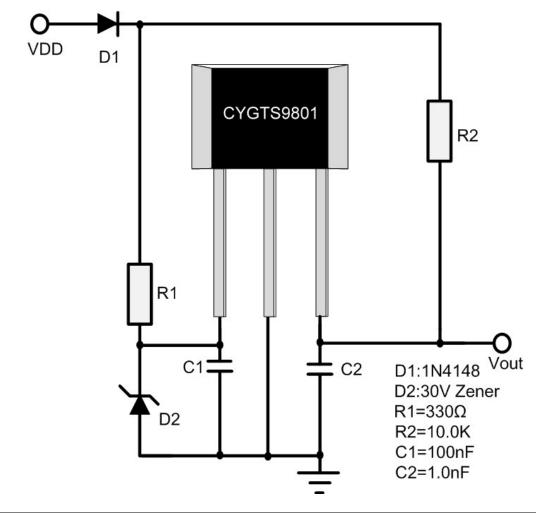
Elektrische Spezifikationen

DC Betriebsparameter T_A=-40°C bis 150°C, VDD=4.0V bis 24V (sofern nicht anders angegeben)

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Versorgungsspannung	V_{DD}	Betrieb	4.0	12	24	V
Versorgungsstrom	I _{DD}	V _{DD} =12V	1.5	3.0	4.5	mA
versorgangsstrom		V _{DD} = 4.0V ~ 30V	1.0		6.0	mA
Spannungshochlaufstatus	Pos	$V_{DD} > V_{DD \text{ (min)}}$	Н	Н	Н	
Leckstrom	I _{Leak}	V _{out} =4.0V ~ 30V			10	mA
Ausgangsstrom	I _{out}	Betrieb			25	mA
Gesättigte Ausgangsspannung	V _{sat}	V _{DD} =12V, I _{out} =25mA			600	mV
Ausgangsstromgrenze	I _{limit}	V _{DD} =12V	50	100	150	mA
Ausgang-Kurzschluss-	T _{Fault}	Fehler	10		20	μs
Abschaltung						
Taktfrequenz	F _{clk}	Betrieb	400	500	600	kHz
Anstiegszeit am Ausgang	T _r	VDD=12V, R1=1.0kΩ			400	ns
		C=10pF				
Abfallzeit am Ausgang	T _f	VDD=12V, R1=1.0kΩ			400	ns
		C=10pF				
Frequenzbandbreite	BW	Betrieb			15	kHz
Thermischer Widerstand	RTH	Betrieb			200	°C/Watt

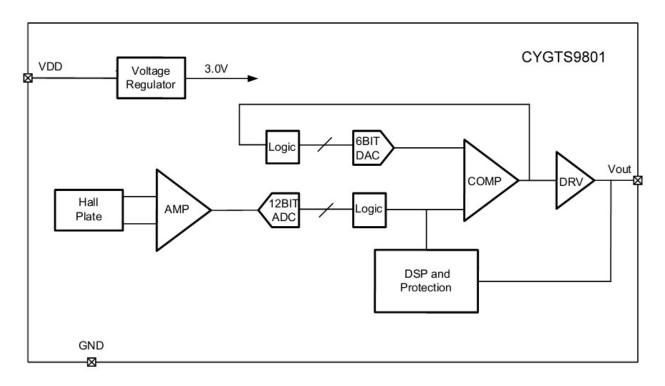

Absolute Grenzwerte

Parameter	Minimalwert	Maximalwert
Versorgungsspannung V _{DD}	-0.3V	30V
Ausgangsspannung Vo	-0.3V	30V
Versorgungsstrom I _{DD}		50mA
Ausgangsstrom I _{out}		30mA
Ausgangsstrom (Fehler) I _{fault}		200mA
Sperrschichttemperatur, T _J (5000h)		150°C
Sperrschichttemperatur, T _J (2000h)		160°C
Sperrschichttemperatur, T _J (1000h)		170°C
Sperrschichttemperatur, T _J (100h)		180°C
Betriebstemperaturbereich	-40°C	150°C
Lagertemperaturbereich	-65°C	150°C

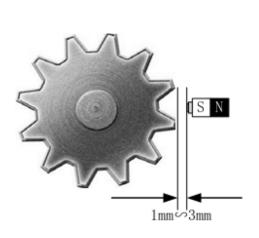

ESD (Emergency Shutdown System) Schutz des Notabschaltsystems

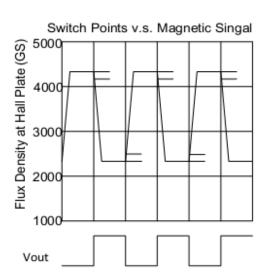
Human Body Model (HBM) Tests

Parameter	Symbol	Max.	Einheit	Hinweis	
ESD	V _{ESD}	8	kV	Nach Standard EIA/JESD22- A114-B-HBM	



Anwendungsschaltung und Anschlussanordnung

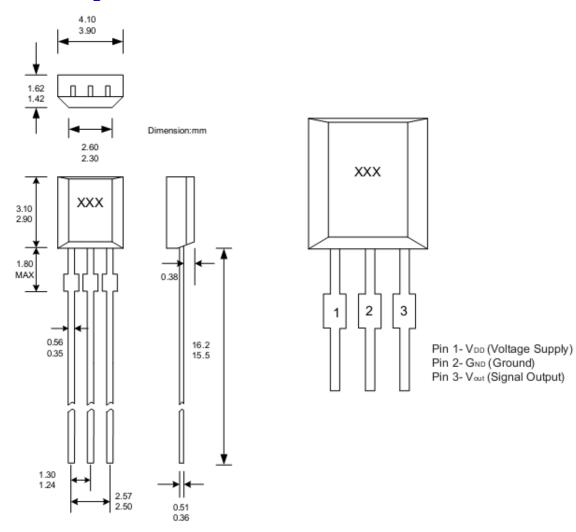



Stiftnummer	Name	Funktion
1	VDD	Versorgungsspannung
2	GND	Masse
3	Vout	Signalausgang

Blockdiagramm

Zahnraddetektion

Im Fall von ferromagnetischer Messzahnrad-Anwendung muss der IC mit dem Südpol eines Permanentmagneten (maximal 4000Gs) vormagnetisiert werden. Beim Zusammenbau des Sensorsystems muss ein Magnet mit einem magnetischen Fluss von 1000Gs-4000Gs gewählt werden. Normalerweise wird die nicht markierte Seite des ICs zum Südpol des Magneten ausgerichtet. Der Magnet sollte an der Rückseite (nicht markierte Seite) des IC mit einem Klebstoff oder geeigneten Epoxy angebracht werden. Der Sensor CYGTS9801 ist über einen weiten Bereich des Magnet-Flusses "selbstanpassend", um jegliches Trimmen in der Anwendung zu vermeiden. Im Einschaltzustand des Chips wird der Ausgang auf den hohen Zustand zurückgesetzt, unabhängig vom magnetischen Feld. Der Ausgang wird nur geändert, nachdem der erste min. Wert erkannt wurde. Der zurückgesetzte Zustand enthält keine Informationen über das Feld.


Wenn die Versorgungsspannung des Chips langsam ansteigt, ist der zurückgesetzte Zustand nicht stabil. In diesem Fall kann das Ausgangssignal eventuell nicht auf die höheren Pegel steigen.

Der maximale Luftspalt hängt von folgendem ab:

- -der magnetischen Feldstärke (Magnet; vor Induktion)
- -dem verwendeten Zahnrad (Abmessungen, Material, etc.)

Es wird dringend empfohlen, einen externen Keramik Bypass-Kondensator von 10nF bis 1uF zwischen der Versorgung und der Masse des Hallsensors anzuschließen, um Hintergrundräusche zu reduzieren. Der Serienwiderstand in Kombination mit dem Bypass-Kondensator stellt einen Filter für EMC-Pulse dar. Der Pull-up-Widerstand sollte so gewählt werden, dass er den Strom des Ausgangs-Transistors begrenzt und der maximale kontinuierliche Ausgangsstrom des Sensors nicht überschritten wird.

Physikalische Eigenschaften

Hinweise:

- exakte Gehäuse und Leiterkonfiguration nach Angaben des Herstellers in den dargestellten Grenzen
- 2. die Dimension ist nominal, wenn keine Toleranz angegeben ist.