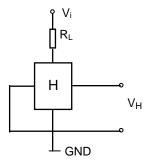


CYSH12AF (InSb) Hall-Effekt Element


Das Hall-Effekt Element CYSH12AF wird aus dem zusammengesetzten Halbleitermaterial Indium Stibnit (InSb) hergestellt, es arbeitet nach dem Hall-Effekt Prinzip. Mit dem Element kann ein magnetisches Flussdichtensignal linear in ein Ausgangsspannungssignal umgewandelt werden. Es handelt sich hierbei um die neue Generation von Hall-Effekt Elementen CYTY101A.

EIGENSCHAFTEN

- hohe magnetische Empfindlichkeit
- niedrige Offset-Spannung
- Miniaturgehäuse

TYPISCHE ANWENDUNGEN

- Magnetfeldmessung
- Stromsensor
- Geschwindigkeitsmessung
- DC Bürstenlose Motoren
- Positionkontrolle

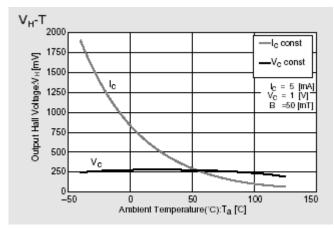
1. Grenzwerte (Ta=25°C)

Parameter	Symbol	Werte	Einheit
Maximale Eingangsstrom	Imax	20 (at 25°C)	mA
Maximale Leistungsabgabe	Pmax	150 (at 25°C)	mW
Betriebstemperaturbereich	Тор	- 40 ~ + 110	°C
Lagerungstemperaturbereich	Tst	− 40 ~ + 150	°C

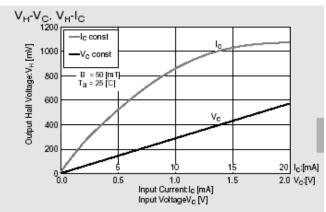
2. Elektrische Eigenschaften (gemessen bei 25°C)

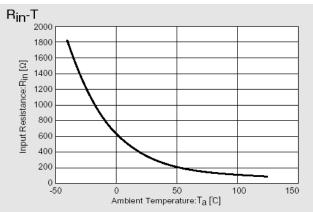
Parameter	Symbol	Messbedingungen	Min	Max	Einheit
Hallspannung am Ausgang	VH	Vin = 1V, B = 50mT	196	415	mV
Eingangswiderstand	Rin	I = 0.1mA	240	550	Ω
Ausgangswiderstand	Rout	I = 0.1mA	240	550	Ω
Offset-Spannung	VO	Vin = 1V, B = 0G	-7	+7	mV
Temp. Koeff. des VH	α	Ta = $0 \sim +40^{\circ}$ C AVG.	-	- 1.8	% /°C
Temp. Koeff. des Rin, Rout	β	Ta = $0 \sim +40^{\circ}$ C AVG.	-	- 1.8	% /°C

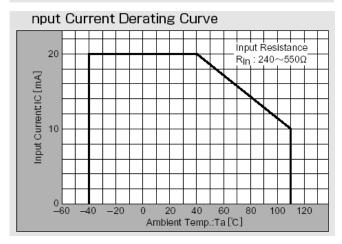
VH = VHM - VO (VHM : Die Ausgangsspannung wurde bei 500G gemessen.)

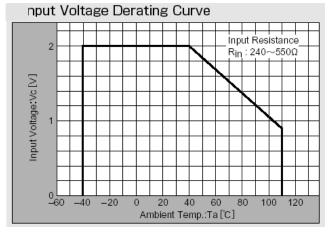

3. Ranganordnung und Kennzeichnung der Hallspannung am Ausgang

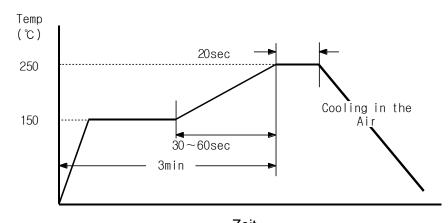
Hallspannung am Ausgang,VH	Rang	Kennzeich-	Messbedingungen	
(mV)		nung		
196 ~ 236	D	SSD		
228 ~ 274	E**	SSE	\/in = 1\/ D = 50mT	
266 ~ 320	F**	SSF	Vin=1V, B=50mT (Konstante Spannung)	
310 ~ 370	G	SSG	(Nonstante opanitung)	
360 ~ 415	Н	SSH		


^{**} Als Standardsensor bieten wir unseren Kunden den Rang E und F.




4. Charakteristische Kurve (nur für Referenzen)



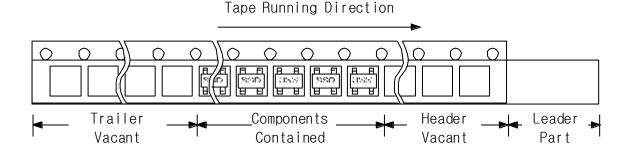

5. Methoden zur Montage

5- 1. Lötbedingungen am PCB

- 1. kein rapides Erhitzen und Abkühlen.
- 2. empfohlene Vorheizbedingungen liegen bei 130-150°C für 2-3 Minuten.
- 3. empfohlene Rückflussbedingungen liegen bei 220~230°C für 10~15 Sekunden

5- 2. Lötmethoden und zulässige Temperatur

Objekt	Methoden	Temperatur
Rückfluss	Löten durch Überschreiten der Hitzezone	Max 250°C für 20sek
Lötkolben	Löten mittels Lötkolben	Max 300°C für 3sek

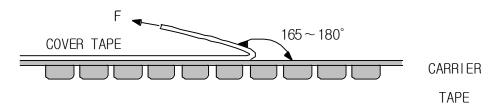


Zeit Rückflussmethode

6. Verpackung

6-1. Aufwicklung

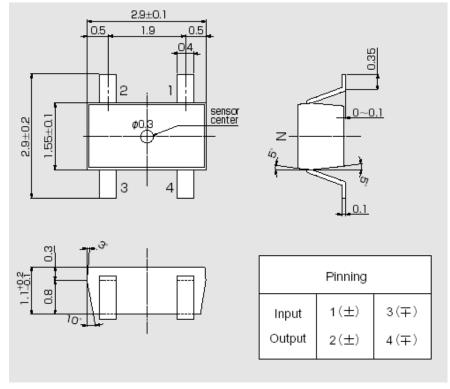
- CYSH12AF sollte so verpackt werden, dass die gekennzeichnete Seite von vorn betrachtet wird und die lange Seite parallel mit der Laufrichtung des Bandes gelegt wird. Die Verwendung nach einer 180° Rotation stellt, aufgrund ihres symmetrischen Aufbaus, kein Problem dar.
- 2. Ca. 40mm, jeweils am Anfang und Ende des Bandes, sind nicht mit Elementen bestückt.



http://www.cy-sensors.com

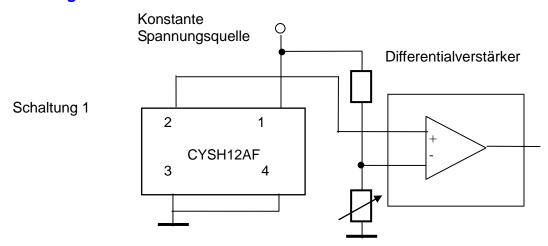
6-2. Bandspezifikationen

1. Zugstärke (F) = 20~70g


- 2. Die Elemente sollten nicht aus dem Fach genommen werden, wenn das Band um 15mm nach unten gebogen wird.
- 3. Die Elemente sollten nicht zu fest aus dem Band gedrückt werden.
- 4. Die Elemente sollten unter 40°C und unter RH 80% aufbewahrt werden.
- 5. Das Band besitzt keine Anschlußmöglichkeit.

6-3. Verpackungseinheiten

- 1. 3000 Stück des Elementes befinden auf einer Spule.
- 2. Fünf Spulen (15.000 Stk.) sind in einer Box verpackt.
- 3. Vier Boxen, (60.000 Stk.), werden in einer Umverpackung verpackt.
- 4. Eine Leerfüllung kann aus Sicherheitsgründen mitverpackt werden.


7. Maße (in mm)


Vier Leitungen des Eingang- und des Ausganganschlusses wurden diagonal-symmetrisch entworfen und sind in den Abmessungen identisch. Trotz der 180° Rotation des Hallsensors, kann der CYSH12AF eingesetzt werden.

Verbindungen

Anwendungshinweise

Die Hallspannung V_H kann positiv oder negativ sein, wenn der Sensor wie folgt verbunden wird (Schaltung 1):

Pin 1: positive Eingangsspannung V+, beispielsweise +5VDC.

Pin 3: GND Pin 2: AUSGANG Pin 4: GND

Es ist nur möglich die positive Spannung am Pin 2 zu messen. Das bedeutet, dass die Ausgangsspannung am Nullmagnetfeld nicht null beträgt. Diese Spannung wird als Offset-Spannung bezeichnet.

Die Ausgangsspannung ist in diesem Fall nicht gleich der Hallspannung. Die Ausgangsspannung entspricht der Summe der Offset-Spannung und der Hallspannung.

Die Offset-Spannung wird null, wenn die doppelte Versorgungsspannung V+ und V- am Sensor anliegt (Schaltung 2):

Version 2 Freigabe in Mai 2016 Dr.-Ing. habil. Jigou Liu

Pin 1: positive Eingangsspannung V+, beispielsweise +5VDC. Pin 3: negative Eingangsspannung V-,beispielsweise -5VDC

Pin 2: AUSGANG Pin 4: GND

In diesem Fall entspricht die Ausgangspannung der Hallspannung.

8. Zuverlässigkeit

8- 1. Testbedingungen

	Bedingungen	
Hohe Lagerungstemperatur	Ta=110°C,t=1000HR	
Niedrige Lagerungs-	Ta=-40°C,t=1000HR	
temperatur		
Hohe Betriebstemperatur	Ta=100°C,lopr=6mA,t=1000HR	
Niedrige Betriebstemperatur	Ta=-20°C,lopr=6mA,t=1000HR	
Hohe Betriebstemperatur,	Ta=60°C, HR=90%,lopr=9mA,t=1000HR	
·hohe Luftfeuchtigkeit		
Feuchtigkeit	Ta=60°C,HR=90%, t=1000HR	
PCT	Ta=121°C,HR=100%, Pv=2atm, t=24HR	
Thermaler Schock	T(L)=-55°C,T(H)=150°C, t=(L,H)=30min,M=30CYCLE	
Löthitzewiderstand	solder temp=250±5°C, t=10sec,REFLOW	
Löttemperatur und Dauer	Löttemperatur=230±5°C, t=5sec,dip	
Anschlussstärke	TENSION 300g/30sec	
Druckanstieg	V=500V, C=200pF, R=0Ω (test method EIAJ EDX 8503)	

8- 2. Kriterien für die Beurteilung

Nach jedem Verlässlichkeitstest sollten die Proben für mindestens 24 Stunden in der entsprechenden Raumtemperatur und Luftfeuchtigkeit aufbewahrt werden und erst dann geprüft werden.

Die Veränderungen sollten sich innerhalb folgender Parametern bewegen.

Objekt	OK SPEC	NG/OK
ΔRin	unter ±20%	
ΔRout	unter ±20%	OK (zufriedenstellend)
ΔVΗ	unter ±20%	
ΔVo/VH	unter ± 5%	