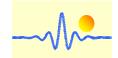


Kataloge

Hall-Effekt Schalter IC mit dualen Ausgängen & Hall-Effekt Zahnradsensor ICs

Copyright© 2022, ChenYang Technologies GmbH & Co. KG


Alle Rechte vorbehalten. Kein Teil dieses Kataloges darf nachgedruckt werden, in einem Datenverarbeitungssystem gespeichert werden, noch in irgendeiner Form der Elektronik, Mechanik, Photokopie, Aufzeichnung oder in anderer Hinsicht übertragen werden, ohne die schriftliche Genehmigung von ChenYang Technologies GmbH & Co.KG

Kontaktadresse:

Markt Schwabener Str. 8 D-85464 Finsing Germany

Tel: +49 (0)8121-2574100 Fax: +49 (0)8121-2574101 Email: info@cy-magnetics.com http://www.cy-magnetics.com

http://www.chenyang-gmbh.com

Tel.: +49 (0)8121-2574100 Fax: +49 (0)8121-2574101 Email: info@chenyang-gmbh.com

http://www.chenyang-gmbh.com

Inhaltverzeichnis

Hall- Effekt Schalter ICs mit dualen Ausgängen	3
CYD8526 Zweikanal-Hall-Effekt Schalter	
CYD8536 Empfindlicher Zweikanal-Hall-Effekt Schalter	
CYD8546 Empfindlicher Zweikanal-Hall-Effekt Schalter	
Hall-Effekt Zahnradsensor ICs	27
CYGTS9621 Hochpräziser Differenzdrehzahlsensor IC	27
CYGTS9625 Hochempfindlicher Differenzial-Zahnradsensor IC	38
CYGTS9632 Hochempfindlicher Geschwindigkeitssensor IC	48
CYGTS9633 Hochempfindlicher Geschwindigkeitssensor IC	57
CYGTS9641 Hochpräziser, zweidrahtiger, differentieller Geschwindigkeitssensor	66
Selbsteinstellender Halleffekt Zahnradsensor IC CYGTS9801	73
Selbsteinstellender Halleffekt Zahnradsensor IC CYGTS9802	78
Selbsteinstellender Halleffekt Zahnradsensor IC CYGTS9803	83
Selbsteinstellender Zweileiter Halleffekt Zahnradsensor IC CYGTS9804	88

Hall- Effekt Schalter ICs mit dualen Ausgängen CYD8526 Zweikanal-Hall-Effekt-Schalter mit Geschwindigkeits- und Richtungsausgängen

Der Schalter CYD8526 ist ein Zweikanal-Hall-Effekt-Schalter-IC, der sich ideal für den Einsatz in Geschwindigkeits- und Richtungserfassungsanwendungen mit kodierten Ringmagnet-Targets eignet. Die Hall-Elemente sind beide photolithographisch besser als 1 µm ausgerichtet. Das Aufrechterhalten einer genauen Verschiebung zwischen den beiden aktiven Hall-Elementen beseitigt die Haupthürde bei der Herstellung, die bei Anwendungen zur Feinabstimmungserkennung angetroffen wird. Der CYD8526 ist ein empfindliches, temperaturstabiles Magnetschalter, der für den Einsatz in rauen Automobil- und Industrieumgebungen geeignet ist.

Die Hall-Elemente des Sensors CYD8526 haben einen Abstand von 1,4 mm, was hervorragende Geschwindigkeits- und Richtungsinformationen für kleingeometrische Ziele liefert. Extrem driftarme Verstärker garantieren Symmetrie zwischen den Schaltern, um die Signalquadratur aufrechtzuerhalten. Ein On-Chip-Regler ermöglicht die Verwendung dieses Schalters über einen weiten Betriebsspannungsbereich von 3,5 V bis 24 V.

Der CYD8526 ist in einem 4-Pin-SIP-Gehäuse und einem Kunststoff-SOT89B-Gehäuse erhältlich. Die Gehäuse sind bleifrei (Pb) und haben eine 100 % matte Zinn-Leadframe-Beschichtung.

EIGENSCHAFTEN

- Zwei miteinander abgestimmte Hallschalter im Substrat
- Zwei Kanalausgänge für Geschwindigkeit und Richtung
- Gute Temperaturstabilität
- Hohe Sensitivität (B_{OP} und B_{RP})
- Versorgungsspannung von 3.5V bis 24V
- Halbleiter-Zuverlässigkeit
- kleine Gehäusegröße
- RoHS-konform

ANWENDUNGEN

- Einklemmschutz in Elektromotorsteuerungen
- Motor-und Ventilatorsteuerung
- Magnetische Encoder
- Rotationswellenüberwachung
- Kfz-Getriebeposition
- Garagentüröffner
- Automatische Schiebetüren
- Schiebedachmotoren

Sensorinformationen

Teilenummer	Verpackung	Montage	Temperatur	B _{OP} (typ.)	B _{RP} (Typ.)
CYD8526VB	1000pcs/Beutel	4-pin SIP	-40°C~150°C	+10.0mT	-10.0mT

Elektrische Spezifikationen

Über den Betriebsfreilufttemperaturbereich ($V_{DD} = 5.0V$, außer wenn anders festgelegt)

Symbol	Parameter	Testbedingung	Min.	Тур.	Max.	Einheit
V_{DD}	Betriebsversorgungsspannung	$T_J < T_{J \text{ (max)}}$	3.50		24	V
I _{DD}	Betriebsversorgungsstrom	V _{DD} =3.5 to 24V	2.0	4.0	6.5	mA
t _{on}	Einschaltzeit			35	50	μs
I _{OL}	Leckstrom im Aus-Zustand	Output Hi-Z			1	μΑ
R _{DS(on)}	FET auf Widerstand	V _{DD} =5V, Io=10mA,		20		Ω
		TA=25°C				
td	Verzögerungszeit am Ausgang	B=B _{RP} to B _{OP}		13	25	μs
tr	Anstiegszeit am Ausgang	R1=1kΩ, Co=50pF			0.5	μs
tf	Abfallzeit am Ausgang	R1=1kΩ, Co=50pF			0.2	μs
f _{BW}	Bandbreite		40			kHz

Magnetische Spezifikationen

Symbol	Parameter	Testbedingungen	Min.	Тур.	Max.	Einheit
B _{OP}	Arbeitspunkt		7.0	10.0	13.0	mT
B _{RP}	Freigabepunkt	VB Gehäuse	-13.0	-10.0	-7.0	mT
B _{HYS}	Hysteresis			20		mT
Во	Magnetisches Offset	$Bo=(B_{OP}+B_{RP})/2$		0		mT

1mT = 10Gs

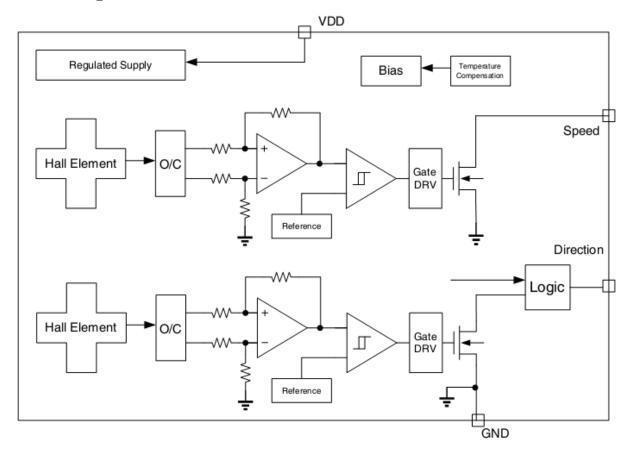
Absolute Grenzwerte

Über den Betriebsfreilufttemperaturbereich

Parameter	Symbol	Min	Max.	Einheit
Versorgungsspannung	V_{DD}	-0.5	35	V
Ausgangsspannung	V _{OUT}	-0.5	35	V
Ausgangssenkenstrom, I _{OUT}	I _{SINK}	0	30	mA
Betriebstemperaturbereich	T _A	-40	150	°C
Maximale Sperrschichttemperatur	T _J	-55	165	°C
Lagerungstemperaturbereich	T _{STG}	-65	175	°C

Hinweis: Spannungen, die über die hier aufgeführten Werte hinausgehen, können den Schalter dauerhaft beschädigen. Wenn der Schalter über einen längeren Zeitraum absoluten Höchstbelastungen ausgesetzt wird, kann dies die Zuverlässigkeit des Schalters beeinträchtigen.

Thermische Eigenschaften


Symbol	Parameter	Testbedingungen	Wert	Einheit
R _{QJA}	Thermischer Widerstand des	Einlagige Leiterplatte, bei der sich das	177	°C/W
	VB-Gehäuses	Kupfer auf die Lötpunkte beschränkt		
R _{QJA}	Thermischer Widerstand des	Einlagige Leiterplatte, bei der sich das	140	°C/W
	BU-Gehäuses	Kupfer auf die Lötpunkte beschränkt		

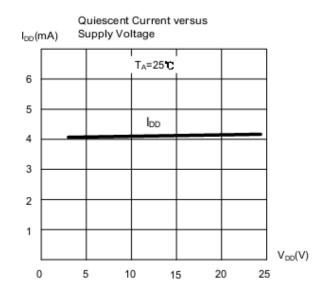
ESD-Schutz

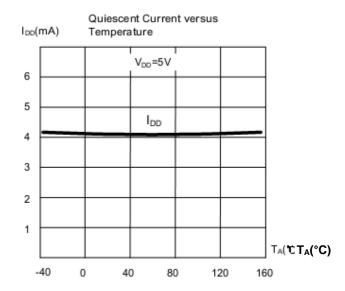
Modell des menschlichen Körpers (Human Body Model HBM) Tests gemäß: Standard EIA/JESD22-A114-B HBM

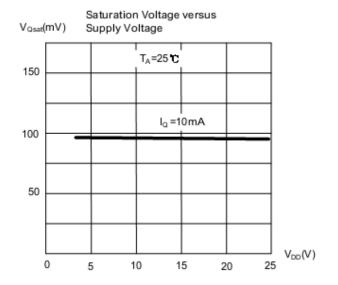

Parameter	Symbol	Min.	Max.	Einheit
ESD-Schutz	V_{ESD}	-6	6	KV

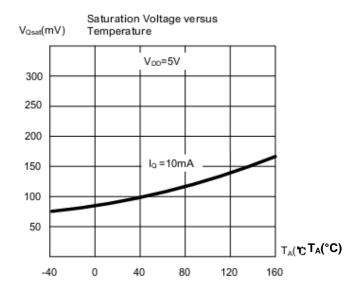
Funktionsdiagramm

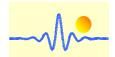
Terminalkonfiguration und Funktionen

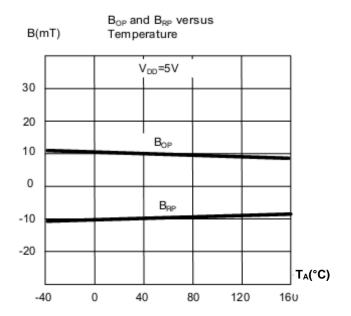


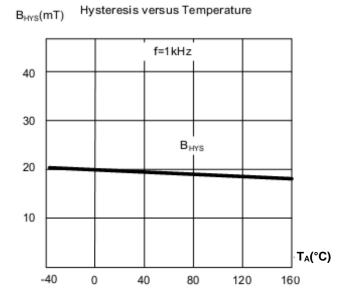

Pin-Anordnung


Anschlu	ss		
Name	Pin (VB-	Тур	Beschreibung
	Gehäuse)		
V_{DD}	1	Stromversorgung	3,5 bis 24 V Spannungsversorgung
Richtungsausgang	2	Ausgang	Richtungsausgang, OC, benötigt einen
			Pull-up-Widerstand
Geschwindigkeits-	3	Ausgang	Drehzahlausgang, OC, benötigt einen
Ausgang			Pull-Up-Widerstand
GND	4	Erdung	Erdungsklemme



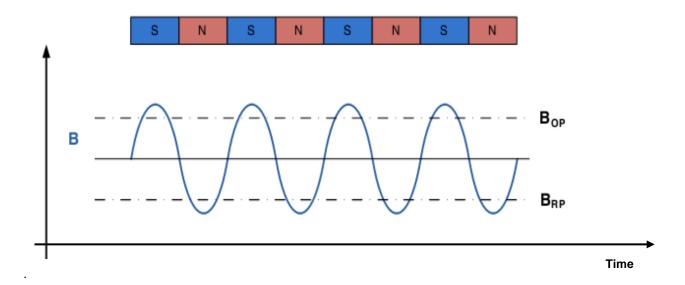

Charakteristische Daten

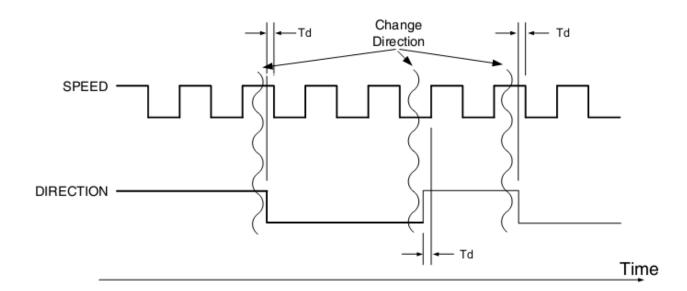


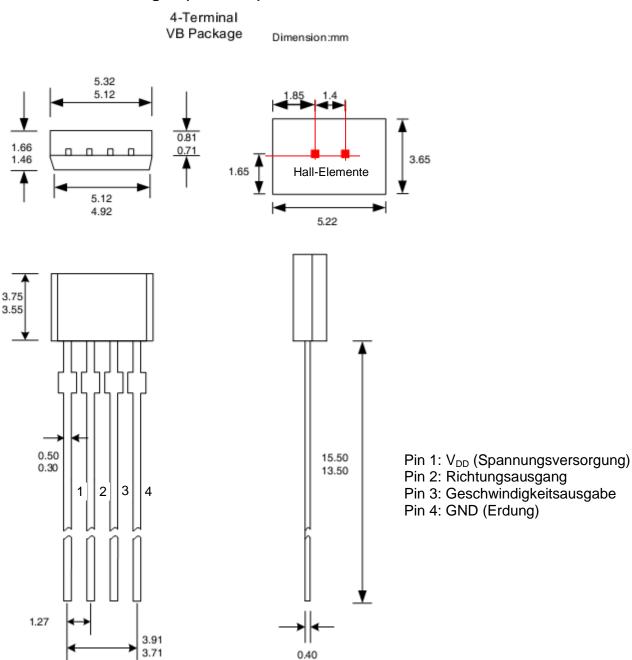




Charakteristische Daten (Fortsetzung)




Typische Anwendungsschaltung


Typische Ausgangswellenform

Geometrische Abmessungen (Gehäuse)

Hinweise:

1. Genaue Gehäuse- und Leitungskonfiguration nach Wahl des Anbieters innerhalb der angegebenen Grenzen

0.36

- 2. Höhe beinhaltet keinen Formangussgrat
- 3. Wo keine Toleranz angegeben ist, ist das Maß nominal

CYD8536 Zweikanaliger empfindlicher Hall-Effekt-Schalter mit Quadratur-Ausgängen

Der CYD8536 ist ein zweikanaliger, bipolarer Schalter mit zwei Hall-Effekt-Sensorelementen, die jeweils einen separaten digitalen Ausgang zur Drehzahlmessung und Richtungserkennung bereitstellen. Die Hall-Elemente sind photolithographisch besser als 1µm ausgerichtet. Die Beibehaltung einer genauen mechanischen Positionierung zwischen den beiden aktiven Hall-Elementen beseitigt die größte Fertigungshürde, die bei Fine-Pitch-Erfassungsanwendungen auftritt. Der CYD8536 ist ein hochempfindlicher, temperaturstabiler Magnetsensor, der sich ideal für den Einsatz in ringmagnetbasierten Geschwindigkeits- und Richtungsmesssystemen in rauen Automobil- und Industrieumgebungen eignet.

Die Hall-Elemente des Sensors CYD8536 sind in einem Abstand von 1,6 mm angeordnet, was hervorragende Geschwindigkeits- und Richtungsinformationen für kleine geometrische Ziele liefert. Extrem abdriftarme Verstärker garantieren die Symmetrie zwischen den Schaltern, um die Signalquadratur aufrechtzuerhalten. Ein On-Chip-Regler ermöglicht den Einsatz dieses Schalters über einen weiten Betriebsspannungsbereich von 2,8V bis 24V.

Der CYD8536 ist in einem 4-poligen SIP-Gehäuse erhältlich. Das Gehäuse ist bleifrei (Pb) und hat eine 100 % matte Zinn-Leadframe-Beschichtung.

EIGENSCHAFTEN

- Zwei miteinander abgestimmte Hallschalter im Substrat
- Zwei Kanalausgänge
- Gute Temperaturstabilität
- Hohe Sensitivität (B_{OP} und B_{RP})
- Versorgungsspannung von 2.8V bis 24V
- Halbleiter-Zuverlässigkeit
- kleine Gehäusegröße
- RoHS-konform

ANWENDUNGEN

- Einklemmschutz in Elektromotorsteuerungen
- Motor-und Ventilatorsteuerung
- Magnetische Encoder
- Rotationswellenüberwachung
- Kfz-Getriebeposition
- Garagentüröffner
- Automatische Schiebetüren
- Schiebedachmotoren

Produktinformationen

Teilenummer	Verpackung	Montage	Temperatur	B _{OP} (typ.)	B _{RP} (Typ.)
CYD8536VB	1000pcs/Beutel	4-pin SIP	-40°C~150°C	+2.0mT	-2.0mT

Elektrische Spezifikationen

Über den Betriebsfreilufttemperaturbereich ($V_{DD} = 5.0 \text{ V}$, sofern nicht anders angegeben)

Symbol	Parameter	Testbedingungen	Min.	Тур.	Max.	Einheiten
V_{DD}	Betriebsversorgungsspannung	$T_J < T_{J \text{ (max)}}$	2.80		24	V
I _{DD}	Betriebsspannungsversorgung	V _{DD} =2.8 to 24V	1.5	3.0	4.5	mA
t _{on}	Einschaltzeit			35	50	μs
I _{OL}	Ausgeschalteter Leckstrom	Ausgang Hi-Z			1	μA
R _{DS(on)}	FET-Einschaltwiderstand	V _{DD} =5V, Io=10mA, TA=25°C		20		Ω
td	Ausgangsverzögerungszeit	B=B _{RP} to B _{OP}		13	25	μs
tr	Anstiegszeit des Ausgangs	R1=1kΩ, Co=50pF			0.5	μs
tf	Abfallzeit des Ausgangs	R1=1kΩ, Co=50pF			0.2	μs
f_{BW}	Bandbreite		40			kHz

Magnetische Spezifikationen

Symbol	Parameter	Testbedingungen		Тур.	Max.	Einheit
B _{OP}	Arbeitspunkt		0.5	2.0	3.5	mT
B _{RP}	Freigabepunkt	VB-Paket	-3.5	-2.0	-0.5	mT
B _{HYS}	Hysterese			4.0		mT
Во	Magnetischer Offset	$Bo=(B_{OP}+B_{RP})/2$		0		mT

1mT = 10Gs

Grenzwerte

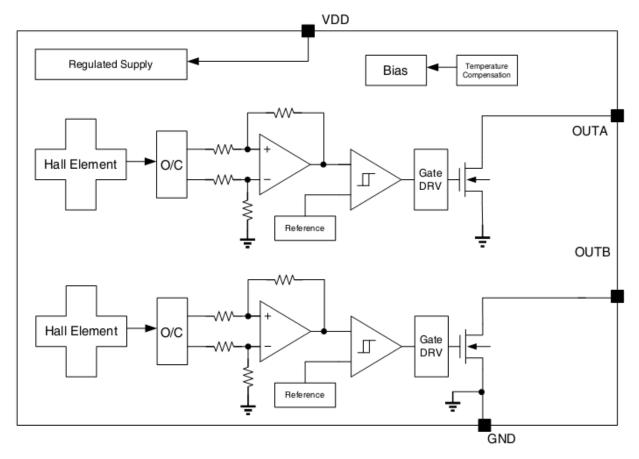
Über den Betriebsfreilufttemperaturbereich

Parameter	Symbol	Min	Max.	Einheit
Versorgungsspannung	V _{DD}	-0.5	28	V
Ausgangsspannung	V _{OUT}	-0.5	28	V
Ausgangssenkungsstrom, I _{OUT}	I _{SINK}	0	30	mA
Betriebstemperaturbereich	T _A	-40	150	°C
Maximale Sperrschichttemperatur	T _J	-55	165	°C
Lagertemperaturbereich	T _{STG}	-65	175	°C

Hinweis: Spannungen, die über die hier aufgeführten Werte hinausgehen, können den Schalter dauerhaft beschädigen. Wenn der Schalter über einen längeren Zeitraum absoluten Höchstbelastungen ausgesetzt wird, kann dies die Zuverlässigkeit des Schalters beeinträchtigen.

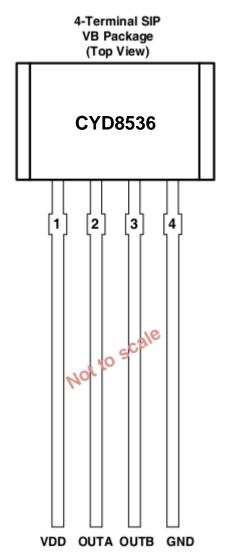
http://www.chenyang-gmbh.com

Thermische Eigenschaften


Symbol	Parameter	Testbedingungen	Rating	Einheit
R _{QJA}	Thermischer Widerstand des	Einlagige Leiterplatte, bei der sich das	177	°C/W
	VB-Gehäuses	Kupfer auf die Lötpunkte beschränkt		
R _{QJA}	Thermischer Widerstand des	Einlagige Leiterplatte, bei der sich das	140	°C/W
	BU-Gehäuses	Kupfer auf die Lötpunkte beschränkt		

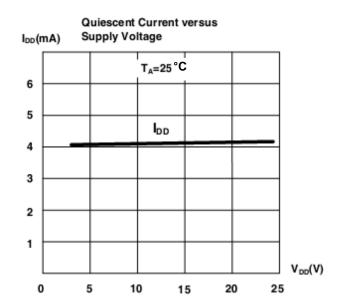
ESD-Schutz

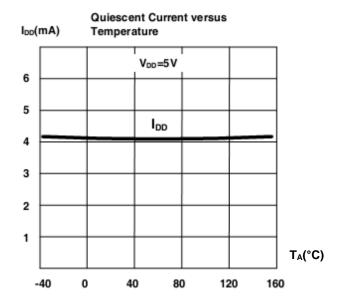
Modell des menschlichen Körpers (Human Body Model HBM) Tests gemäß: Standard EIA/JESD22-A114-B HBM

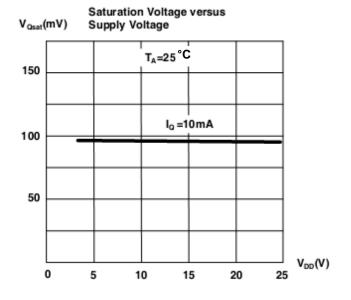

	·-··						
Parameter	Symbol	Min.	Max.	Einheit			
ESD-Schutz	Vesn	-6	6	KV			

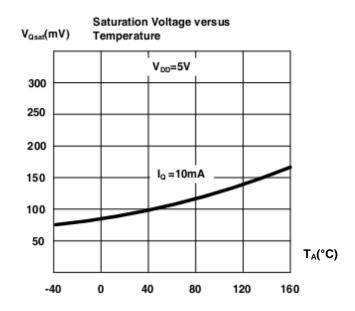
Funktionsdiagramm

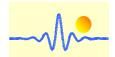
Terminalkonfiguration und Funktionen

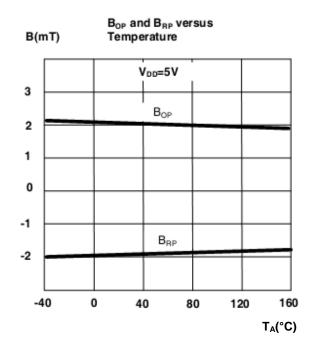


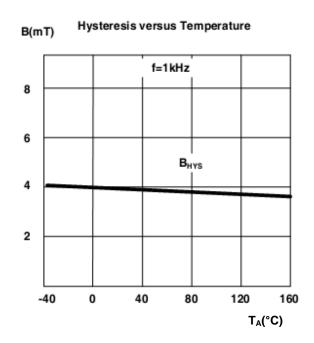

Pin-Anordnung

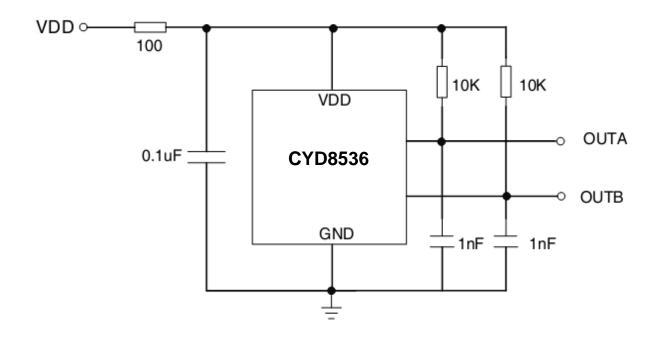

	Anschluss	Tyro	Beschreibung
Name	Pin (VB-Gehäuse)	- Тур	bescribing
V_{DD}	1	Stromversorgung	2,8 bis 24 V Spannungsversorgung
OUTA	2	Ausgang A	Kanalausgang A, OC, benötigt einen Pull-up-
			Widerstand
OUTB	3	Ausgang B	Kanalausgang B, OC, benötigt einen Pull-Up-
			Widerstand
GND	4	Erdung	Erdungsklemme



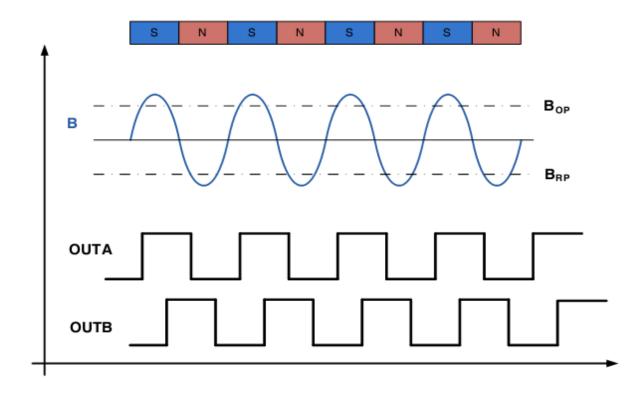

Charakteristische Daten

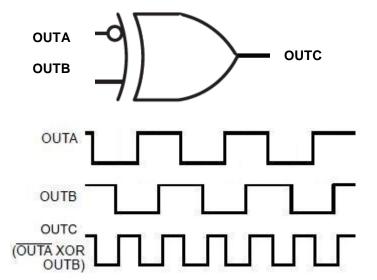




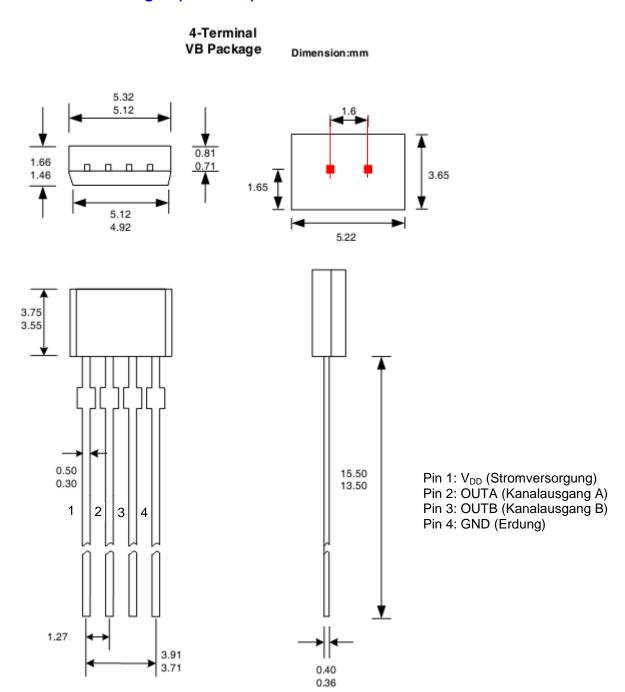


Charakteristische Daten (Fortsetzung)

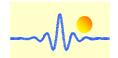



Typische Anwendungsschaltung


Typische Ausgangswellenform


Durch die folgende logische Verknüpfung (OUTA XOR OUTB) erhält man ein neues Ausgangssignal OUTC, dessen Frequenz doppelt so hoch ist wie die Frequenz des Ausgangs OUTA oder OUTB.

Das Signal OUTC kann zur Geschwindigkeitsmessung verwendet werden, während OUTA und OUTB zur Richtungserkennung verwendet werden.


Geometrische Abmessungen (Gehäuse)

Hinweise:

- 1. Genaue Gehäuse- und Leitungskonfiguration nach Wahl des Anbieters innerhalb der angegebenen Grenzen
- 2. Höhe beinhaltet keinen Formangussgrat
- 3. Wo keine Toleranz angegeben ist, ist das Maß nominal

Email: info@chenyang-gmbh.com http://www.chenyang-gmbh.com

CYD8546 Zweikanaliger empfindlicher Hall-Effekt-Schalter mit Quadraturausgängen

Der CYD8546 ist ein zweikanaliger, bipolarer Schalter mit zwei Hall-Effekt-Sensorelementen, die jeweils einen separaten digitalen Ausgang zur Drehzahlmessung und Richtungserkennung bereitstellen. Die Hall-Elemente sind photolithographisch besser als 1µm ausgerichtet. Die Beibehaltung einer genauen mechanischen Positionierung zwischen den beiden aktiven Hall-Elementen beseitigt die größte Fertigungshürde, die bei Fine-Pitch-Erfassungsanwendungen auftritt. Der CYD8546 ist ein hochempfindlicher, temperaturstabiler Magnetsensor, der sich ideal für den Einsatz in ringmagnetbasierten Geschwindigkeits- und Richtungsmesssystemen in rauen Automobil- und Industrieumgebungen eignet.

Die Hall-Elemente des Sensors CYD8546 sind in einem Abstand von 0,95mm angeordnet, was hervorragende Geschwindigkeits- und Richtungsinformationen für kleine geometrische Ziele liefert. Extrem abdriftarme Verstärker garantieren die Symmetrie zwischen den Schaltern, um die Signalquadratur aufrechtzuerhalten. Ein On-Chip-Regler ermöglicht den Einsatz dieses Schalters über einen weiten Betriebsspannungsbereich von 2,8V bis 24V.

Der CYD8546 ist in einem 4-poligen SIP-Gehäuse erhältlich. Das Gehäuse ist bleifrei (Pb) und hat eine 100 % matte Blechrahmenbeschichtung.

Eigenschaften

- Zwei aufeinander abgestimmte Hall-Schalter auf einem Substrat
- Zweikanalige Ausgänge für Geschwindigkeit und Richtung
- Gute Temperaturstabilität
- Hohe Empfindlichkeit (B_{OP} and B_{RP})
- 2,5V bis 24V Versorgungsspannung
- Solid-State-Zuverlässigkeit
- Kleine Gehäusegröße
- RoHS-konform

Anwendungen

- Einklemmschutz in Elektromotorsteuerungen
- Motor- und Ventilatorsteuerung
- Magnetischer Encoder
- Überwachung der rotierenden Welle
- Kfz-Getriebeposition
- Garagenöffner
- Elektrische Schiebetüren
- Schiebedachmotoren

Produktinformationen

Teilnummer	Verpackung	Montage	Temperatur	B _{OP} (typ.)	BRP (Typ.)
CYD8546VB	1000 Stück/Beutel	4-pin SIP	-40°C~150°C	+2.0mT	-2.0mT

Elektrische Spezifikationen

Über den Betriebsfreilufttemperaturbereich ($V_{DD} = 5.0 \text{ V}$, sofern nicht anders angegeben)

Symbol	Parameter	Testbedingungen	Min.	Тур.	Max.	Einheiten
V_{DD}	Betriebsversorgungsspannung	$T_J < T_{J \text{ (max)}}$	2.50		24	V
I _{DD}	Betriebsspannungsversorgung	V _{DD} =2.5 to 24V	1.5	3.0	4.5	mA
t _{on}	Einschaltzeit			35	50	μs
I _{OL}	Ausgeschalteter Leckstrom	Ausgang Hi-Z			1	μA
R _{up}	Interner Pull-Up-Widerstand		5.0	10	15	kΩ
R _{DS(on)}	FET-Einschaltwiderstand	V _{DD} =5V, Io=10mA, TA=25°C		20		Ω
td	Ausgangsverzögerungszeit	B=B _{RP} to B _{OP}		13	25	μs
tr	Anstiegszeit des Ausgangs	R1=1kΩ, Co=50pF			0.5	μs
tf	Abfallzeit des Ausgangs	R1=1kΩ, Co=50pF			0.2	μs
f_{BW}	Bandbreite		40			kHz

Magnetische Spezifikationen

Symbol	Parameter	Testbedingungen	Min.	Тур.	Max.	Einheiten
B _{OP}	Arbeitspunkt		1.0	2.0	3.0	mT
B _{RP}	Freigabepunkt	VB Package	-3.0	-2.0	-1.0	mT
B _{HYS}	Hysterese			4.0		mT
Во	Magnetischer Offset	$Bo=(B_{OP}+B_{RP})/2$		0		mT

1mT = 10Gs

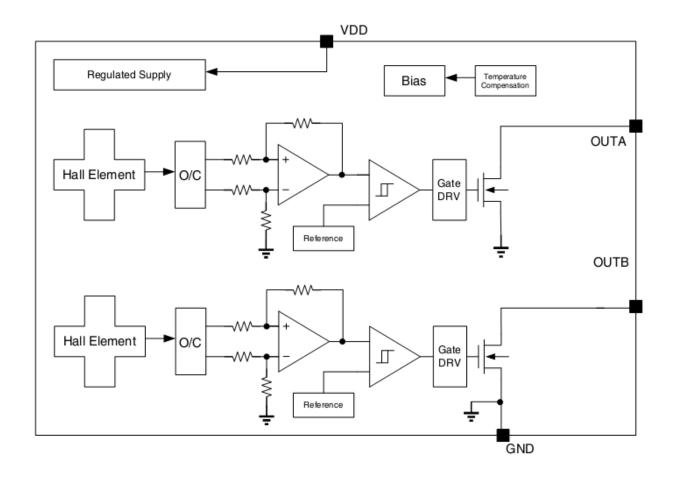
Grenzwerte

Über den Betriebsfreilufttemperaturbereich

Parameter	Symbol	Min	Max.	Einheit
Versorgungsspannung	V_{DD}	-28	28	V
Ausgangsspannung	V _{OUT}	-0.5	28	V
Ausgangssenkungsstrom,	I _{SINK}	0	30	mA
I _{оит}				
Betriebstemperaturbereich	T _A	-40	150	°C
Maximale	TJ	-55	165	°C
Sperrschichttemperatur				
Lagertemperaturbereich	T _{STG}	-65	175	°C

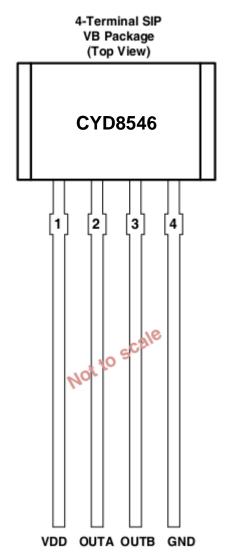
Hinweis: Spannungen, die über die hier aufgeführten Werte hinausgehen, können den Schalter dauerhaft beschädigen. Wenn der Schalter über einen längeren Zeitraum absoluten Höchstbelastungen ausgesetzt wird, kann dies die Zuverlässigkeit des Schalters beeinträchtigen.

Thermische Eigenschaften


Symbol	Parameter	Testbedingungen	Wert	Einheit
R_{QJA}	Thermischer Widerstand des	Einlagige Leiterplatte, bei der sich das	177	°C/W
	VB-Gehäuses	Kupfer auf die Lötpunkte beschränkt		

ESD-Schutz

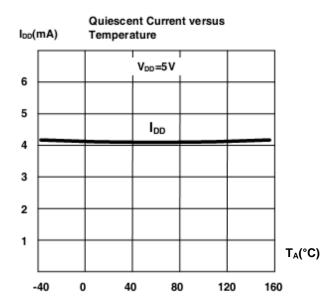
Modell des menschlichen Körpers (Human Body Model HBM) Tests gemäß: Standard EIA/JESD22-A114-B HBM

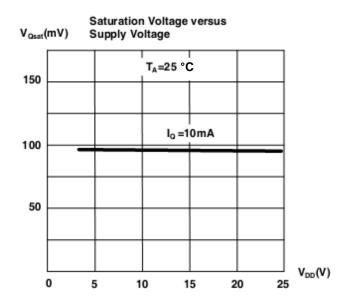

Parameter	Symbol	Min.	Max.	Einheit
ESD-Schutz	V_{ESD}	-4	4	KV

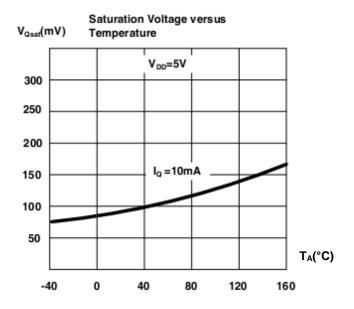
Funktionsdiagramm

Terminalkonfiguration und Funktionen

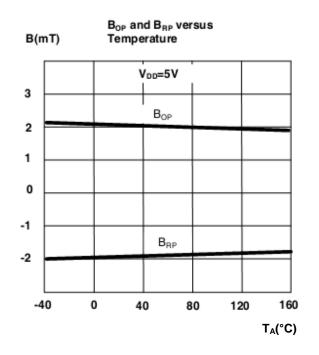
Pin-Anordnung

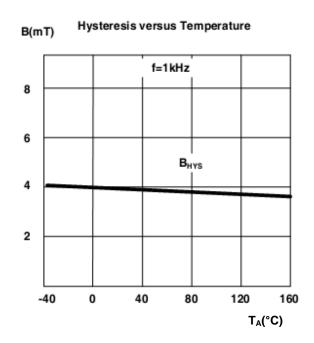

Anschluss		Tun	Pagabraihung
Name	Pin (VB-Gehäuse)	Тур	Beschreibung
V_{DD}	1	Stromversorgung	2.5V to 24V Spannungsversorgung
OUTA	2	Ausgang A	A Kanalausgang mit internem Pull-Up-
			Widerstand
OUTB	3	Ausgang B	B Kanalausgang mit internem Pull-Up-
			Widerstand
GND	4	Erdung	Erdungsklemme

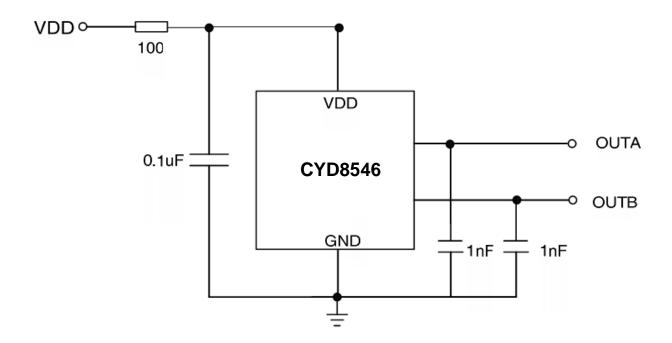

Email: info@chenyang-gmbh.com http://www.chenyang-gmbh.com



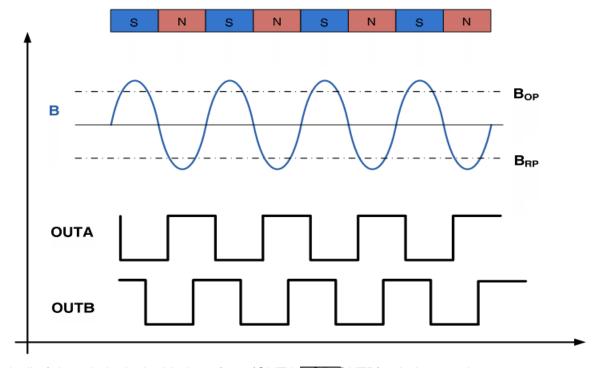
Charakteristische Daten

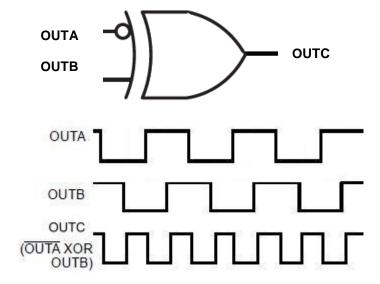


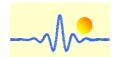




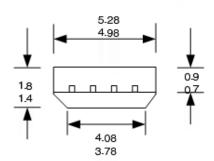
Charakteristische Daten (Fortsetzung)

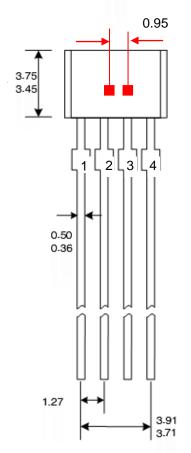


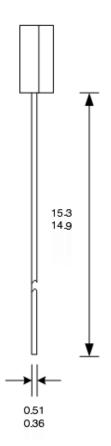

Typische Anwendungsschaltung


Typische Ausgangswellenform

Durch die folgende logische Verknüpfung (OUTA XOR OUTB) erhält man ein neues Ausgangssignal OUTC, dessen Frequenz doppelt so hoch ist wie die Frequenz des Ausgangs OUTA oder OUTB.


Das Signal OUTC kann zur Geschwindigkeitsmessung verwendet werden, während OUTA und OUTB zur Richtungserkennung verwendet werden.




Geometrische Abmessungen (Gehäuse)

4-Terminal VB Package

Dimension;mm

Pin 1: V_{DD} (Stromversorgung) Pin 2: OUTA (Kanalausgang A)

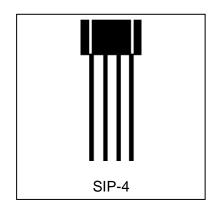
Pin 3: OUTB (Kanalausgang B)

Pin 4: GND (Erdung)

Hinweise:

- 1. Genaue Gehäuse- und Leitungskonfiguration nach Wahl des Anbieters innerhalb der angegebenen Grenzen
- 2. Höhe beinhaltet keinen Formangussgrat
- 3. Wo keine Toleranz angegeben ist, ist das Maß nominal

http://www.chenyang-gmbh.com


Hall-Effekt Zahnradsensor ICs

CYGTS9621 Hochpräziser Differenzdrehzahlsensor IC mit Nulldurchgangsausgangsignal

Der differentielle Hall-Effekt-Zahnradsensor CYGTS9621 bietet eine hohe Empfindlichkeit und eine hervorragende Stabilität über Temperatur und symmetrische Schwellenwerte, um einen stabilen Arbeitszyklus zu erreichen. Der CYGTS9621 eignet sich besonders für Drehzahlerkennungs- und Zeitsteuerungsanwendungen von ferromagnetischen Zahnrädern wie Antiblockiersystemen, Getrieben, Kurbelwellen usw. Der integrierte Schaltkreis, der auf dem Hall-Effekt-Prinzip basiert, reagiert auf sich ändernde differentielle Magnetfelder, die durch eisenhaltige Ziele erzeugt werden, wenn sie mit einem Magneten gekoppelt sind. Er liefert ein digitales Ausgangssignal, dessen Frequenz proportional zur Drehgeschwindigkeit ist. Ein differentieller Hall-IC wird nicht durch radiale Vibrationen innerhalb des effektiven Luftspalts des Sensors beeinflusst und erfordert keine externe Signalverarbeitung.

Eigenschaften

- Integrierter Filterkondensator
- Genauer echter Nulldurchgangsschaltpunkt
- Süd- und Nordpol-Vorinduktion möglich
- Großer Luftspalt
- Versorgungsspannung 3,8 V bis 24 V
- Großer Betriebstemperaturbereich -40°C ~ 150°C
- Überspannungsschutz in allen PIN
- Rückstromschutz im Versorgungsspannungs-PIN (V_{DD})
- Ausgangsschutz gegen elektrische Störungen

Anwendungen

Automobile und schwere Nutzfahrzeuge	Industriegebiete:
 Nockenwellen- und Kurbelwellen-	 Geschwindigkeit des Kettenrads Geschwindigkeit/Abstand des Kettengliedförderers Stopp-Bewegungsmelder Kostengünstige Hochgeschwindigkeits-
drehzahl und -position Drehzahl des Getriebes Drehzahlmesser Antischlupf-/Traktionskontrolle	Näherungsschalter Tachometer, Zähler.

Produktinformation

Teilenummer	Packung	Montage	Temperaturbereich	Markierung
CYGTS9621VB	500 Stück/Beutel	4-pin SIP	-40°C~150°C	9621

Betriebsbereich

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Zurück Vorspannung Bereich	B _{Bias}	Betrieb	-500		500	mT
Differentielles Magnetfeld	ΔΒ	f=1kHz	-100		100	mT
Versorgungsspannung	V _{DD}	Betrieb	3.8	12	24	V
Betriebstemperatur	T _A		-40	~	150	°C
Lagertemperatur	Ts		-65	~	175	°C

Elektrische und magnetische Spezifikationen

Technische Parameter $T_A = -40$ °C bis 150°C, $V_{DD} = 12V$ (sofern nicht anders angegeben)

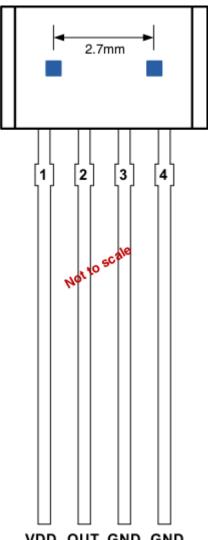
Parameter	Symbol	Testbedingungen	Min	Тур.	Max	Einheit
Versorgungsspannung	V_{DD}	Betrieb	3.8	12	24	V
Versorgungsstrom	I _{DD}	VDD=3.8 to 24 V	2.5	3.5	4.5	mA
Ausgangssättigungsspannung	V_{sat}	I _{out} =20mA, T _A =25°C		150	400	mV
Ausgangs Leckstrom	I _{Leak}	V _{out} =24V			10	μA
Überspannungsschutz bei Versorgungsspannung	V _{SP}	I _{DD} = 10mA	30	35	40	V
Überspannungsschutz an der Ausgangsklemme	V _{OP}	I _{out} =1mA, V _{out} =Hoch	30	35	40	V
Überstromschutz	OCP ¹	T _A =25°C	40			mA
Einschaltzeit	t _{po} ²	V _{DD} >3.8V		3.8	9.0	ms
Einschwingzeit	t _{settle} 3	V _{DD} >3.8V, f=1kHz	0		50	ms
Reaktionszeit	t _{response} 4	$V_{DD}>3.8V$, f=1kHz	3.8		59	ms
Ausgangsanstiegszeit	T _R ⁵	R1=1kΩ C=20pF			0.2	μs
Ausgangsabfallzeit	T _F	R1=1kΩ C=20pF			0.2	μs
Obere Eckfrequenz	fcu	-3dB, einpolige	20			kHz
Untere Eckfrequenz	fcl	-3dB, einpolige			10	Hz
Back-Bias-Bereich	B _{Bias}	Betrieb	-500		500	mT
Differentielles magnetisches Feld	ΔB^6	f=1kHz	-100		100	mT
Positiv und negativ Hysterese	B _{HYS}	f=1kHz, ΔB=5mT	0.4	1.2	2.0	mT

- 1 I_{OUT} ändert den Zustand nicht, wenn IOUT=OCP.
- 2 Erforderliche Zeit zum Initialisieren des Sensors.
- 3 Zeit, die benötigt wird, damit die Ausgangsschaltpunkte innerhalb der Spezifikation liegen.
- 4 Entspricht t_{po} + t_{settle} .
- 5 Die Anstiegszeit des Ausgangs wird von der RC-Zeitkonstante dominiert.
- 6 Eine Überschreitung dieser Grenze kann zu einer verringerten Arbeitszyklusleistung und Phasengenauigkeit führen.

Grenzwerte

Parameter	Symbol	Mindestwert	Maximalwert	Einheit
Versorgungsspannung	V_{DD}	-30	30	V
Ausgangsstrom	I _{DD}	-10	25	mA
Ausgangsklemmenspannung	V _{OUT}	-0.5	30	V
Ausgangsklemme Stromsenke	I _{SINK}	0	40	mA
Betriebsumgebungstemperatur	T _A	-40	150	°C
Maximale Sperrschichttemperatur	T_J	-55	165	°C
Lagertemperatur	T _{STG}	-65	175	°C

Hinweis: Belastungen, die über die hier aufgeführten hinausgehen, können den Sensor dauerhaft beschädigen. Die Einwirkung von absoluten Höchstleistungsbedingungen über einen längeren Zeitraum kann die Zuverlässigkeit des Sensors beeinträchtigen.

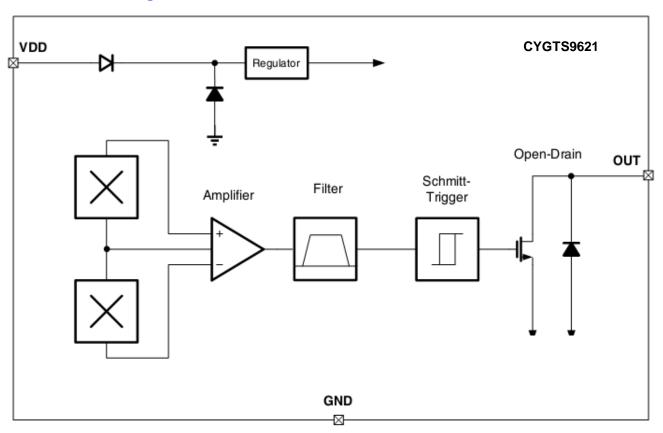

ESD-Schutz (Emergency Shutdown System)

Menschliche Körpermodell-Test (Human Body Model HBM)

ĺ	Parameter	Symbol	Max.	Einheit	Hinweis
I	ESD	V_{ESD}	±4.0	kV	Gemäß der Norm EIA/JESD22-A114-B-HBM

Pin-Konfiguration

4-Terminal SIP VB-Gehäuse (Ansicht von oben)



VDD OUT GND GND

Pin Nr.	Symbol	Тур	Beschreibung
1	V_{DD}	Versorgungsspannung	3,8V bis 24V Stromversorgung
2	OUT	Ausgang	Open-Drain-Ausgang erfordert einen Pull-up-
			Widerstand
3	GND	Erdung	Erdungsanschluss
4	GND	Erdung	Erdungsanschluss

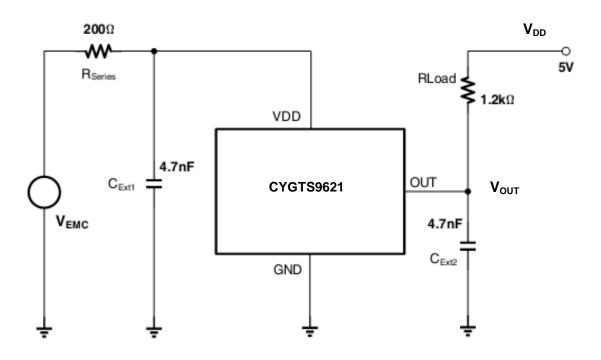
Funktionsblockdiagramm

Funktionsbeschreibung

Der Sensor-IC CYGTS9621 enthält zwei integrierte Hall-Sensorelemente, die auf ein Magnetfeld an der Oberfläche des ICs differenziell reagieren. Der Trigger schaltet den Ausgang aus (Ausgang hoch), wenn das differentielle Magnetfeld den Nullpunkt durchquert, während es an Stärke zunimmt (bezogen auf die positive Richtung), und schaltet den Ausgang ein (Ausgang niedrig), wenn das differentielle Magnetfeld den Nullpunkt durchquert, während es an Stärke verliert (die negative Richtung).

Die Funktion wird durch den Einsatz von zwei separaten Komparatoren erreicht. Beide Komparatoren verwenden denselben Referenzpunkt, 0G, um eine hohe Genauigkeit zu gewährleisten, aber ein Komparator hat eine positive Hysterese, BHYS1, und der andere eine negative Hysterese, BHYS2. Daher schaltet ein Komparator (BOP) im Nulldurchgang bei einem ansteigenden Differenzsignal und der andere (BRP) im Nulldurchgang bei einem abfallenden Differenzsignal. Die Hysterese an jedem Komparator schließt ein falsches Schalten bei Rauschen oder Ziel-Jitter aus.

Der Sensor CYGTS9621 kann zur Erkennung der Drehung von Zahnrädern in einer rauen Umgebung eingesetzt werden. Stöße gegen das Zahnrad und Restwelligkeit haben keinen Einfluss auf das Ausgangssignal. Außerdem kann der Sensor sowohl in einer Zweidraht- als auch in einer Dreidraht-Konfiguration betrieben werden.

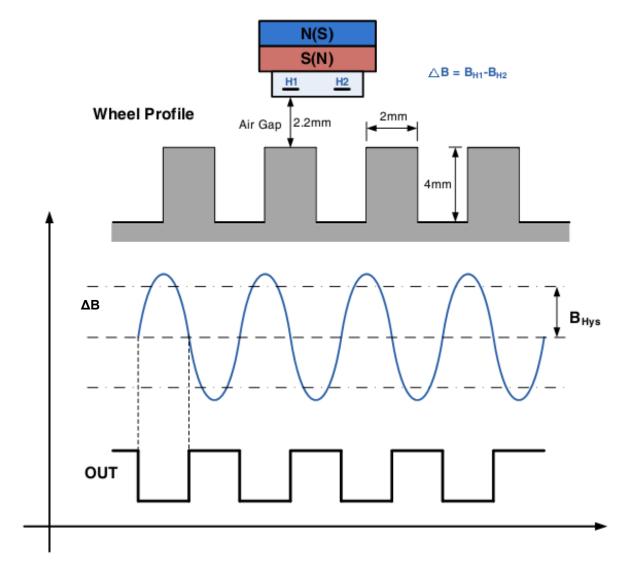

Elektromagnetische Verträglichkeit - (Werte hängen von R_{Series} ab!)

Ref. ISO 7637-1; siehe die Testschaltung für EMV-Tests; $\triangle B_{PP}$ =10mT (ideales sinusförmiges Signal); V_{DD} =13.5V, f_{B} =1 kHz; T_{A} =25°C; R_{Series} >200 Ω ;

Parameter	Symbol	Stufe/Typ.	Status
Test-Impuls 1		IV /-100V	С
Test-Impuls 2		IV / 100V	С
Test-Impuls 3a	V _{EMC}	IV /-150V	A
Test-Impuls 3b		IV / 100V	A
Test-Impuls 4		IV /-7V	A
Test-Impuls 5		IV / 86.5V	С

- 1. Testkriterien für Status A: Kein fehlender Puls und kein zusätzlicher Puls auf dem IC-Ausgangssignal, und Einschaltdauer und Jitter liegen innerhalb der Spezifikationsgrenzen.
- 2. Testkriterium für Status B: Kein fehlender Puls und kein zusätzlicher Puls auf dem IC-Ausgangssignal.
- 3. Testkriterium für Status C: Ein oder mehrere Parameter können während der Aufnahme außerhalb der Spezifikation liegen, kehrt aber nach Entfernen der Aufnahme automatisch in den Normalbetrieb zurück.

Testschaltung für EMV-Tests

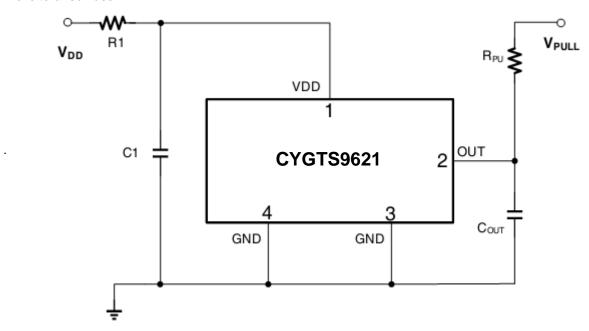


Zahnradabtastung

Im Falle einer ferromagnetischen Zahnradanwendung muss der Sensor IC durch den Süd- oder Nordpol eines Dauermagneten vorgespannt werden, der beide Hallsonden abdecken sollte.

Der maximale Luftspalt hängt von folgenden Parametern ab:

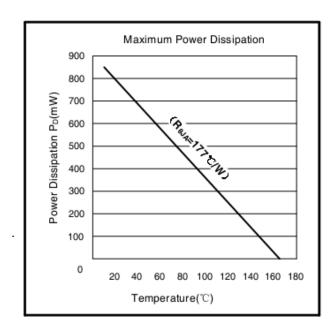
- die Magnetfeldstärke (verwendeter Magnet; Vorinduktion) und
- das verwendete Zahnrad (Abmessungen, Material, usw.)

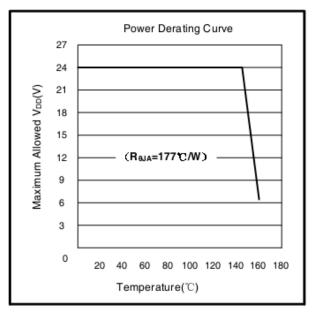


Empfohlene Anwendung


Der Sensor CYGTS9621 enthält einen On-Chip-Spannungsregler und kann über einen weiten Versorgungsspannungsbereich betrieben werden. Bei Anwendungen, die den Sensor mit einer ungeregelten Spannungsversorgung betreiben, muss ein externer transienten Schutz hinzugefügt werden. Für Anwendungen, die eine geregelte Leitung verwenden, kann ein EMI/RFI-Schutz dennoch erforderlich sein.

Dreileiteranschluss


Komponent	Wert	Einheit
R _{PU}	1.2	kΩ
R1	200	Ω
C1	0.1	μF
Соит	1.0	μF


- 1. Pull-up-Widerstand nicht zum Schutz, sondern für den Normalbetrieb erforderlich
- 2. R1 dient zur Verbesserung der CI-Leistung
- 3. C_{OUT} ist für verbesserte BCI-Leistung

Thermische Eigenschaften

Symbol	Parameter	Testbedingungen	Wert	Einheit
RQJA	Thermischer Widerstand des	Einlagige Leiterplatte, bei der sich das	177	°C/W
	VB-Pakets	Kupfer auf die Lötpunkte beschränkt		

Beschreibung der Leistungsreduzierung

Der Sensor muss unterhalb der maximalen Sperrschichttemperatur des Sensors $T_{J(max.)}$ betrieben werden. Unter bestimmten Kombinationen von Spitzenbedingungen kann ein zuverlässiger Betrieb eine Herabsetzung der zugeführten Leistung oder eine Verbesserung der Wärmeableitungseigenschaften der Anwendung erfordern. Der Wärmewiderstand des Gehäuses, $R_{\theta JA}$, ist ein Wert, der die Fähigkeit der Anwendung und des Sensors zusammenfasst, Wärme von der Verbindung über alle Pfade an die Umgebungsluft abzuleiten. Seine Hauptkomponente ist die effektive Wärmeleitfähigkeit K der Leiterplatte, einschließlich benachbarter Bauelemente und Leiterbahnen. Die Strahlung vom Chip durch das Sensorgehäuse, $R_{\theta JC}$, ist ein relativ kleiner Bestandteil von $R_{\theta JA}$. Umgebungstemperatur, T_A und Luftbewegung sind bedeutende externe Faktoren, die durch Überformen gedämpft werden.

Der Effekt unterschiedlicher Leistungspegel (Power Dissipation, PD) kann abgeschätzt werden. Die folgenden Formeln stellen die fundamentalen Beziehungen dar, die verwendet werden, um T_J bei P_D zu schätzen.

 $PD=VDD \times IDD$ (1)

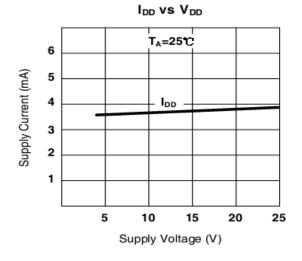
 $\triangle T = PD \times R\theta JA$ (2)

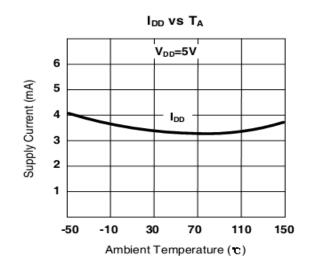

 $TJ = TA + \triangle T \tag{3}$

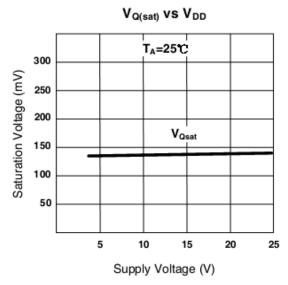
Beispielsweise TA=25°C, VDD=12V, IDD=3.5mA, $R\theta JA=177$ °C/W, wir bekommen

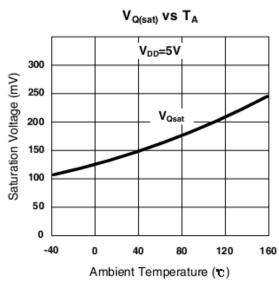
PD=VDD x IDD =12V x 3.5mA=42mW $\triangle T=PD x R\theta JA=42mW x 177 °C/W=7.5°C$

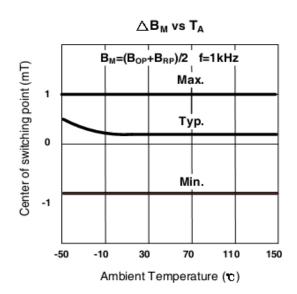
TJ=TA +△*T=*2*5*°C+7.*5*°C=32.*5*°C

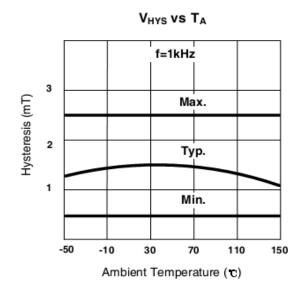

http://www.chenyang-gmbh.com

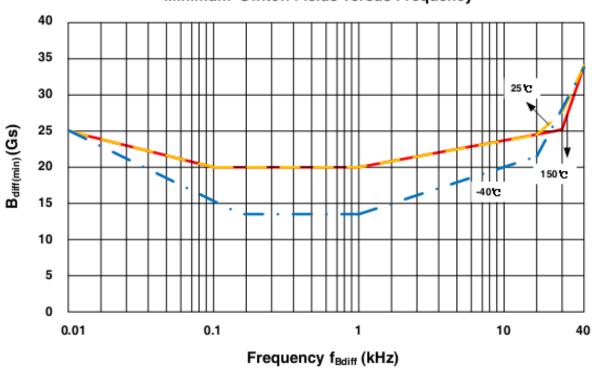



Chen Yang


Technologies GmbH & Co. KG


Empirisches Ergebnis

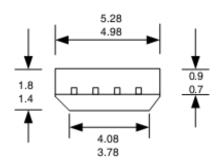


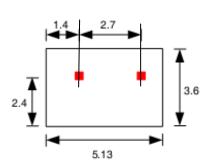


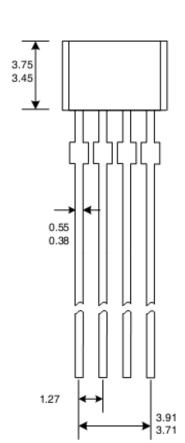
Simulationsergebnis

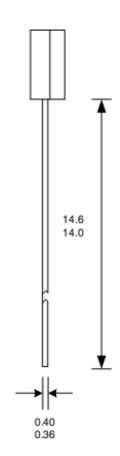
Minimum Switch Fields versus Frequency

Typical Phase Shift versus Frequency





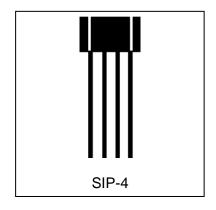

Gehäusezeichnung


4-Terminal VB Package

Dimension:mm

Hinweise:

- 4. Genaue Gehäuse- und Leitungskonfiguration nach Wahl des Anbieters innerhalb der angegebenen Grenzen
- 5. Höhe beinhaltet keinen Formangussgrat
- 6. Wo keine Toleranz angegeben ist, ist das Maß nominal



CYGTS9625 Hochempfindlicher Differenzial-Zahnradsensor IC

Der differentielle Hall-Effekt-Zahnradsensor CYGTS9625 bietet eine hohe Empfindlichkeit und eine hervorragende Stabilität über Temperatur und symmetrische Schwellenwerte, um einen stabilen Arbeitszyklus zu erreichen. CYGTS9625 eignet sich besonders für Drehzahlerkennungs- und Zeitsteuerungsanwendungen von ferromagnetischen Zahnrädern wie Antiblockiersystemen, Getrieben, Kurbelwellen usw. Der integrierte Schaltkreis, der auf dem Hall-Effekt-Prinzip basiert, reagiert auf sich ändernde differentielle Magnetfelder, die durch eisenhaltige Ziele erzeugt werden, wenn sie mit einem Magneten gekoppelt sind. Er liefert ein digitales Ausgangssignal, dessen Frequenz proportional zur Drehgeschwindigkeit ist. Ein differentieller Hall-IC wird nicht durch radiale Vibrationen innerhalb des effektiven Luftspalts des Sensors beeinflusst und erfordert keine externe Signalverarbeitung. Der Sensor ist in einem 4-Pin-Kunststoff-SIP verpackt. Es ist bleifrei (Pb), mit 100 % matt verzinntem Leadframe.

EIGENSCHAFTEN

- Integrierter Filterkondensator
- Süd- und Nordpol-Vorinduktion möglich
- Großer Luftspalt
- Versorgungsspannung von 3,8 V bis 24 V
 - Breiter Betriebstemperaturbereich -40°C ~ 150°C
- Ausgang kompatibel mit TTL- und CMOS-Logikfamilien
- Überspannungsschutz in allen PIN
- Rückstromschutz im Netzteil V_{DD} PIN
- Ausgangsschutz gegen elektrische Störungen

ANWENDUNGEN

Automobile und Schwerkraftlastwagen	Industriegebiete:
 Nockenwellen- und Kurbelwellendrehzahl und -position Drehzahl des Getriebes Drehzahlmesser Antischlupf-/Traktionskontrolle 	 Geschwindigkeit des Kettenrads Geschwindigkeit/Abstand des Kettengliedförderers Melder einer Abstellvorrichtung Kostengünstige Hochgeschwindigkeits- Näherungsschalter Tachometer, Zähler.

Produktinformation

Teilenummer	Verpackung Montage		Temperaturbereich	Markierung
CYGTS9625VB	500pcs/ Beutel	4-pin SIP	-40°C~150°C	9625

Betriebsbereich

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Back-Bias-Bereich	B _{Bias}	Operating	-500		500	mT
Differentialmagnetfeld	ΔΒ	f=1kHz	-100		100	mT
Versorgungsspannung	V_{DD}	Operating	3.8	12	24	V
Betriebstemperatur	T _A		-40	~	150	°C
Lagerungstemperatur	Ts		-65	~	175	°C

Elektrische und magnetische Eigenschaften

Betriebsparameter T_A = -40°C bis 150°C, V_{DD} = 12V (außer wenn anders festgelegt)

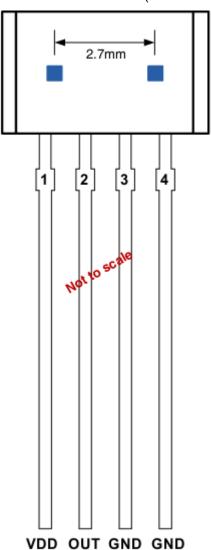
Parameter	Symbol	Testbedingungen	Min	Тур.	Max	Einheit
Versorgungsspannung	V_{DD}	Betrieb	3.8	12	24	V
Versorgungsstrom	I _{DD}	VDD=3.8 to 24 V	2.5	3.5	4.5	mA
Ausgangssättigungsspannung	V_{sat}	I _{out} =20mA, T _A =25°C		150	400	mV
Ausgangs Leckstrom	I _{Leak}	V _{out} =24V			10	μA
Überspannungsschutz bei Versorgungsspannung	V_{SP}	I _{DD} = 10mA	30	35	40	V
Überspannungsschutz an der Ausgangsklemme	V _{OP}	I _{out} =1mA, V _{out} =Hoch	30	35	40	V
Überstromschutz	OCP ¹	T _A =25°C	40			mA
Einschaltzeit	t_{po}^2	V _{DD} >3.8V		3.8	9.0	ms
Einschwingzeit	t _{settle} 3	V _{DD} >3.8V, f=1kHz	0		50	ms
Reaktionszeit	t _{response} 4	V _{DD} >3.8V, f=1kHz	3.8		59	ms
Anstiegszeit des Ausgangs	T _R ⁵	R1=1kΩ C=20pF			0.2	μs
Ausgangsabfallzeit	T _F	R1=1kΩ C=20pF			0.2	μs
Obere Eckfrequenz	fcu	-3dB, einpolige	20			kHz
Untere Eckfrequenz	fcl	-3dB, einpolige			10	Hz
Back-Bias-Bereich	B _{Bias}	Betrieb	-500		500	mT
Differentielles magnetisches Feld	ΔB^6	f=1kHz	-100		100	mT
Ausgang am Schaltpunkt	Вор	f=1kHz, ΔB=5mT			0	mT
Ausgang aus Schaltpunkt	Boff	f=1kHz, ΔB=5mT	0			mT
Positive und negative Hysterese	B _{HYS}	f=1kHz, ΔB=5mT	0.4	1.2	2.0	mT

- 1 I_{OUT} ändert seinen Zustand nicht, wenn I_{OUT} =OCP.
- 2 Erforderliche Zeit für die Initialisierung des Sensors.
- 3 Zeit, die benötigt wird, bis die Schaltpunkte des Ausgangs innerhalb der Spezifikation liegen.
- 4 Entspricht t_{po} + t_{settle} .
- 5 Die Ausgangsanstiegszeit wird von der RC-Zeitkonstante dominiert.
- 6 Ein Überschreiten dieses Grenzwerts kann zu einer Verringerung des Tastverhältnisses und der Phasengenauigkeit führen.

Absolute Grenzwerte

Parameter	Symbol	Min. Wert	Max. Wert	Einheit
Versorgungsspannung	V_{DD}	-30	30	V
Ausgangsstrom	I _{DD}	-10	25	mA
Ausgangsklemmenspannung	V_{OUT}	-0.5	30	V
Stromsenke der Ausgangsklemme	I _{SINK}	0	40	mA
Betriebsumgebungstemperatur	T _A	-40	150	°C
Maximale Sperrschichttemperatur	T_J	-55	165	°C
Lagertemperatur	T _{STG}	-65	175	°C

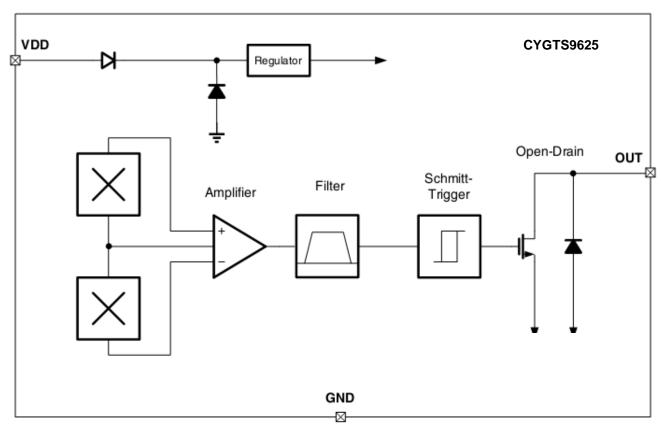
Hinweise: Spannungen, die über die hier aufgeführten Werte hinausgehen, können den Sensor dauerhaft beschädigen. Wenn der Sensor über einen längeren Zeitraum absoluten Höchst-belastungen ausgesetzt wird, kann dies die Zuverlässigkeit des Sensors beeinträchtigen.


ESD (Emergency Shutdown System)-Protection

Human Body Model (HBM)-Test

Parameter	Symbol	Max.	Einheit	Hinweis
ESD	V_{ESD}	±4.0	kV	Nach dem Standard EIA/JESD22-A114-B-HBM

Stift-Konfiguration


4-Anschluss SIP VB Gehäuse (Ansicht von oben)

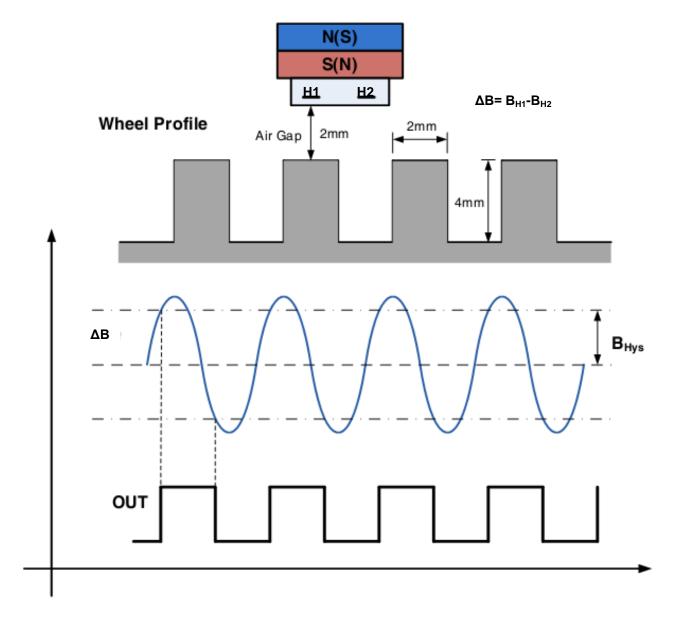
Pin Nr.	Symbol	Тур	Beschreibung
1	V_{DD}	Versorgung	3.8V bis 24V Spannungsversorgung
2	OUT	Ausgang	Open-Drain-Ausgang erfordert einen Pull-Up- Widerstand
3	GND	Erdung	Erdungsanschluss
4	GND	Erdung	Erdungsanschluss

Funktionelles Blockdiagramm

Funktionelle Beschreibung

Der Differential-Hall-Sensor-IC erkennt die Bewegung und Position von ferromagnetischen und permanentmagnetischen Strukturen durch Messung der differentiellen Flussdichte des Magnetfeldes. Änderungen der Feldstärke an der Vorderseite des Bauteils, die durch ein sich bewegendes Ziel induziert werden, werden von den beiden integrierten Hallsonden erfasst. Die Sonden erzeugen Signale, die von einer On-Chip-Elektronik differenziell verstärkt werden. Dieses differentielle Design bietet **Immunität** gegen radiale Vibrationen innerhalb des Betriebsluftspaltbereichs des Sensors CYGTS9625, indem es das Gleichtaktsignal unterdrückt. Magnet- und System-Offsets im eingeschwungenen Zustand werden durch einen differenziellen On-Chip-Bandpassfilter eliminiert. Dieser Filter bietet auch eine relative Immunität gegen Störungen durch elektromagnetische Quellen.

Der Sensor verwendet eine fortschrittliche Temperaturkompensation für den Bandpassfilter, die Empfindlichkeit und die Schmitt-Trigger-Schaltpunkte, um einen optimalen Betrieb über einen breiten Bereich von Luftspalten und Temperaturen auch bei niedrigeren Frequenzen zu gewährleisten.

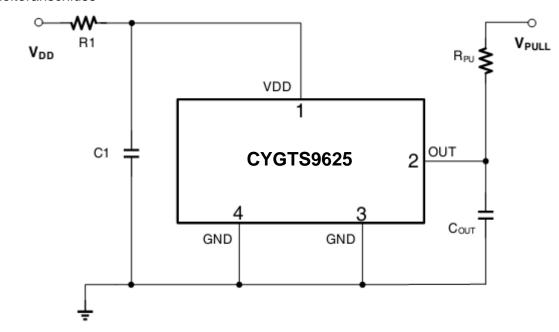

Der Sensor CYGTS9625 kann zur Erkennung der Rotation von Zahnrädern in einer rauen Umgebung eingesetzt werden. Stöße gegen das Zahnrad und Restwelligkeit haben keinen Einfluss auf das Ausgangssignal. Darüber hinaus kann der Sensor sowohl in einer Zweidraht- als auch in einer Dreidraht-Konfiguration betrieben werden.

Zahnradabtastung

Im Falle einer ferromagnetischen Zahnradanwendung muss der Sensor IC durch den Süd- oder Nordpol eines Dauermagneten vorgespannt werden, der beide Hallsonden abdecken sollte.

Der maximale Luftspalt hängt von folgenden Parametern ab:

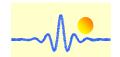
- die Magnetfeldstärke (verwendeter Magnet; Vorinduktion) und
- das verwendete Zahnrad (Abmessungen, Material, usw.)

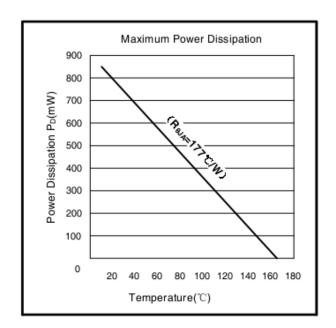


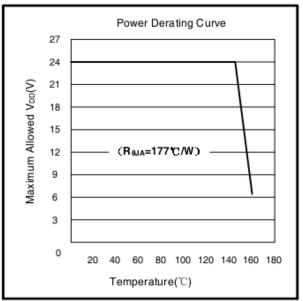
Empfohlene Anwendungen

Der Sensor CYGTS9625 enthält einen On-Chip-Spannungsregler und kann über einen weiten Versorgungsspannungsbereich betrieben werden. Bei Anwendungen, die den Sensor mit einer ungeregelten Spannungsversorgung betreiben, muss ein externer transienten Schutz hinzugefügt werden. Für Anwendungen, die eine geregelte Leitung verwenden, kann ein EMI/RFI-Schutz dennoch erforderlich sein.

Dreileiteranschluss




Komponente	Wert	Einheit
R _{PU}	1.2	kΩ
R1	200	Ω
C1	0.1	μF
Соит	1.0	μF


- 1. Pull-up-Widerstand nicht zum Schutz, sondern für den Normalbetrieb erforderlich
- 2. R1 dient zur Verbesserung der CI-Leistung
- 3. COUT ist für verbesserte BCI-Leistung

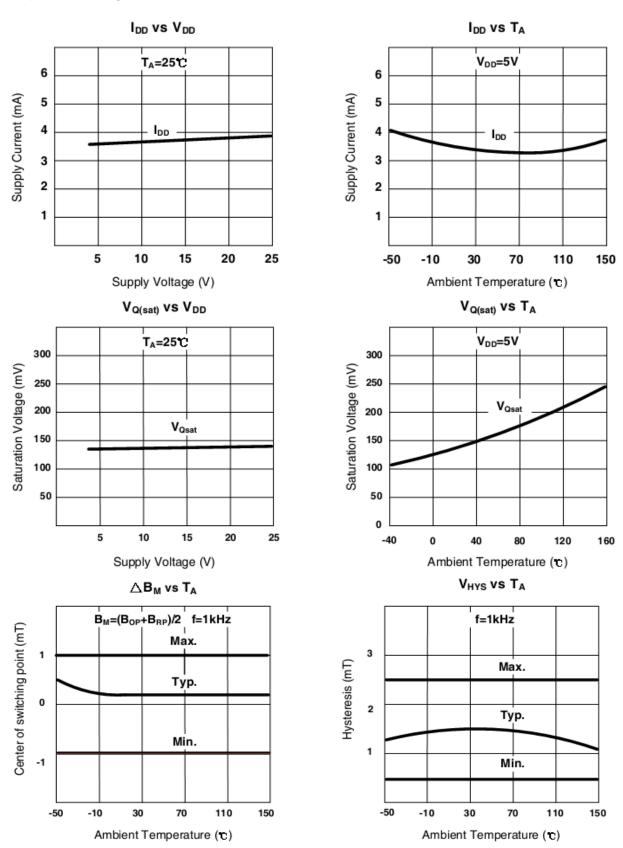
Thermale Eigenschaften

Symbol	Parameter	Testbedingungen	Wert	Einheit
RQJA	VB Wärmewiderstand des	Einlagiger PCB, mit Kupfer nur auf den	177	°C/W
	Gehäuses	Lötpads		

Leistungsderating Beschreibung

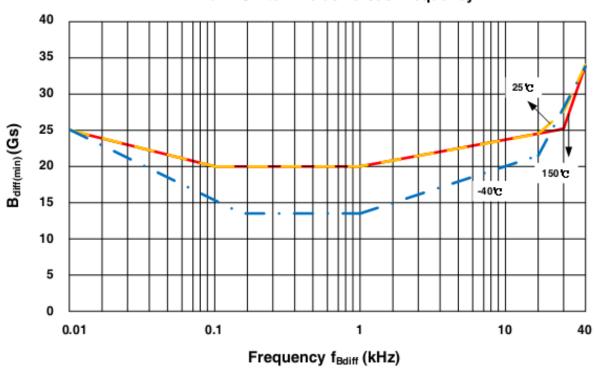
Der Sensor muss unterhalb der maximalen Sperrschichttemperatur des Sensors $T_{J(max.)}$ betrieben werden. Unter bestimmten Kombinationen von Spitzenbedingungen kann ein zuverlässiger Betrieb eine Herabsetzung der zugeführten Leistung oder eine Verbesserung der Wärmeableitungseigenschaften der Anwendung erfordern. Der Wärmewiderstand des Gehäuses, $R_{\theta JA}$, ist ein Wert, der die Fähigkeit der Anwendung und des Sensors zusammenfasst, Wärme von der Verbindung über alle Pfade an die Umgebungsluft abzuleiten. Seine Hauptkomponente ist die effektive Wärmeleitfähigkeit K der Leiterplatte, einschließlich benachbarter Bauelemente und Leiterbahnen. Die Strahlung vom Chip durch das Sensorgehäuse, $R_{\theta JC}$, ist ein relativ kleiner Bestandteil von $R_{\theta JA}$. Umgebungstemperatur, T_A und Luftbewegung sind bedeutende externe Faktoren, die durch Überformen gedämpft werden.

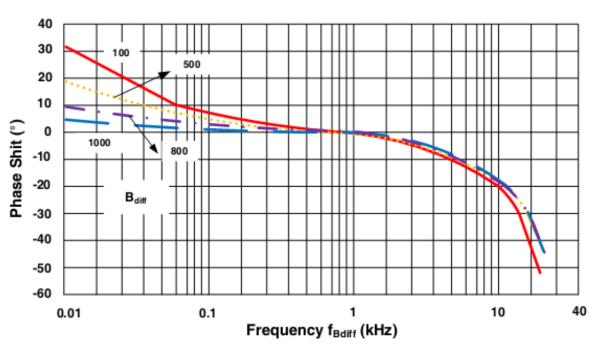
Der Effekt unterschiedlicher Leistungspegel (Power Dissipation, PD) kann abgeschätzt werden. Die folgenden Formeln stellen die fundamentalen Beziehungen dar, die verwendet werden, um $T_{\rm J}$ bei $P_{\rm D}$ zu schätzen.

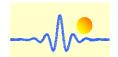

$$P_D=V_{DD} \times I_{DD}$$
 (1)
 $\triangle T=P_D \times R_{\theta JA}$ (2)
 $T_J=T_A + \triangle T$ (3)

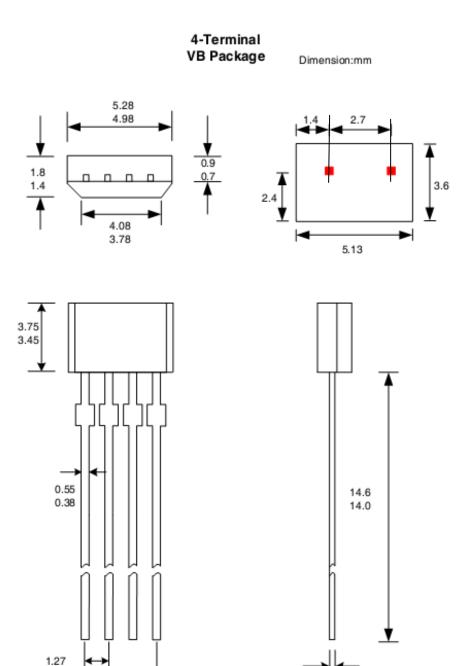
Beispielsweise

 $T_A = 25^{\circ}\text{C}$, $V_{DD} = 12V$, $I_{DD} = 3.5mA$, $R_{\theta JA} = 177^{\circ}\text{C}/W$, wir bekommen $P_D = V_{DD} \times I_{DD} = 12V \times 3.5mA = 42mW$ $\triangle T = P_D \times R_{\theta JA} = 42mW \times 177^{\circ}\text{C}/W = 7.5^{\circ}\text{C}$ $T_J = T_A + \triangle T = 25^{\circ}\text{C} + 7.5^{\circ}\text{C} = 32.5^{\circ}\text{C}$


Empirisches Ergebnis




Ergebnis der Simulation



Typical Phase Shift versus Frequency

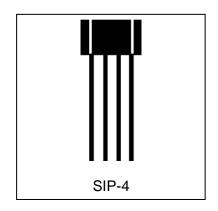
Zeichnung des Gehäuses

Hinweise:

- 1. Genaue Gehäuse- und Leitungskonfiguration nach Wahl des Verkäufers innerhalb der angegebenen Grenzen
- 2. Die Höhe umfasst nicht den Anschnitt
- 3. Wo keine Toleranz angegeben ist, ist das Maß nominal.

3.91 3.71

0.40



CYGTS9632 Hochempfindlicher Geschwindigkeitssensor IC mit zwei Quadraturausgängen

Der CYGTS9632 ist ein differentieller Hall-Effekt Sensor IC mit zwei unabhängigen Kanälen, die Rechtecksignale ausgeben. Der IC bietet hohe Sensitivität, hervorragende Temperaturstabilität und symmetrische Thresholds, womit stabile Tastgrade erreicht werden können. Die integrierte Schaltung reagiert auf sich ändernde differentielle Magnetfelder, die durch rotierende Ringmagnete oder eisenhaltige Zielobjekte entstehen, sobald sie mit Magneten gekoppelt werden. Durch die Nutzung des A und B Rechtecksignals ist der IC besonders für die Geschwindigkeitsmessung und Richtungs-erkennung von magnetischen Ringen oder ferromagnetischen Zahnräder geeignet. Der IC wird von einem 4-Pin Plastik SIP umhüllt. Das Gehäuse ist bleifrei und besitzt eine matte Blechrahmen-beschichtung.

EIGENSCHAFTEN

- Zwei unabhängige digitale Quadratur-A/B-Ausgänge
- Genauer echter Nulldurchgangsschaltpunkt
- Süd- und Nordpol-Vorinduktion möglich
- Großer Luftspalt
- Versorgungsspannungsbereich zwischen 3.8V und 24V
- Geringer Stromverbrauch 6,5 mA (typ.)
- Breiter Betriebstemperaturbereich -40°C ~ 150°C
- Überspannungsschutz in allen PIN
- Rückstromschutz im Versorgungsspannungs-PIN (V_{DD})
- Ausgangsschutz gegen elektrische Störungen

ANWENDUNGEN

Automobile und Schwerkraftlastwagen	Industrielle Anwendungen
 Nockenwellen- und Kurbelwellendrehzahl und -position Drehzahl des Getriebes Drehzahlmesser Antischlupf-/Traktionskontrolle 	 Geschwindigkeit des Kettenrads Geschwindigkeit/Abstand des Kettengliedförderers Melder einer Abstellvorrichtung Kostengünstige Hochgeschwindigkeits- Näherungsschalter Tachometer, Zähler.

Sensorinformation

Teilenummer	Verpackung	Montage	Temperaturbereich	Markierung	
CYGTS9632VB	500pcs/Beutel	4-pin SIP	-40°C~150°C	9632	

Betriebsbereich

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Back-Bias-Bereich	B _{Bias}	Im Betrieb	-500		500	mT
Versorgungsspannung	V_{DD}	Im Betrieb	3.8	12	24	V
Betriebstemperatur	T _A		-40	~	150	°C
Lagerungstemperatur	Ts		-65	~	175	°C

Elektrische und magnetische Eigenschaften

Technische Parameter T_A = -40°C bis 150°C, V_{DD} = 5V (sofern nicht anders angegeben)

Parameter	Symbol	Testbedingungen	Min	Тур.	Max	Einheit
Versorgungsspannung	V_{DD}	Betrieb	3.8	12	24	V
Versorgungsstrom	I _{DD}	VDD=3.8 to 24 V	4.5	6.5	8.5	mA
Ausgangssättigungsspannung	V _{sat}	I _{out} =20mA, T _A =25°C		150	400	mV
Ausgangsleckstrom	I _{Leak}	V _{out} =24V			10	μA
Überspannungsschutz bei Versorgungsspannung	V _{SP}	I _{DD} = 10mA	30	35	40	V
Überspannungsschutz an der Ausgangsklemme	V _{OP}	I _{out} =1mA, V _{out} =High	30	35	40	V
Überstromschutz	OCP ¹	T _A =25°C	40			mA
Einschaltzeit	t _{po} ²	V _{DD} >3.8V		3.8	9.0	ms
Einschwingzeit	t _{settle} 3	V _{DD} >3.8V, f=1kHz	0		50	ms
Reaktionszeit	t _{response} 4	V _{DD} >3.8V, f=1kHz	3.8		59	ms
Ausgangsanstiegszeit	T _R ⁵	R1=1kΩ C=20pF		0.4	1.0	μs
Ausgangsabfallzeit	T _F	R1=1kΩ C=20pF		0.35	1.0	μs
Obere Eckfrequenz	fcu	-3dB, einpolige	20			kHz
Úntere Eckfrequenz	fcl	-3dB, einpolige			5	Hz
Back-Bias-Bereich	B _{Bias}	Betrieb	-500		500	mT
Arbeitspunkt von Kanal 1	ΔB _{OP1}	f=1kHz, B _{diff} =5mT			0	mT
Freigabepunkt von Kanal 1	ΔB_{RP1}	f=1kHz, B _{diff} =5mT	0			mT
Hysterese von Kanal 1	B _{HYS1}	f=1kHz, ΔB=5mT	0.5	1.5	2.5	mT
Schaltpunkt Mitte Kanal 1	ΔB_{M1}	$(B_{OP} + B_{RP})/2$	-2.0	0	2.0	mT
Arbeitspunkt von Kanal 2	ΔB_{OP2}	f=1kHz, B _{diff} =5mT			0	mT
Freigabepunkt von Kanal 2	ΔB_{RP2}	f=1kHz, B _{diff} =5mT	0			mT
Hysterese von Kanal 2	B _{HYS2}	f=1kHz, ΔB=5mT	0.5	1.5	2.5	mT
Schaltpunkt Mitte Kanal 2	ΔB_{M2}	$(B_{OP} + B_{RP})/2$	-2.0	0	2.0	mT

¹ I_{OUT} ändert seinen Zustand nicht, wenn I_{OUT}=OCP.

Absolute Grenzwerte

Parameter	Symbol	Minimalwert	Maximalwert	Einheit
Versorgungsspannung	V_{DD}	-30	30	V
Ausgangsstrom	I _{DD}	-10	25	mA
Ausgangsklemmenspannung	V _{OUT}	-0.5	30	V
Ausgangsklemme Stromsenke	I _{SINK}	0	40	mA
Betriebsumgebungstemperatur	T _A	-40	150	°C
Maximale Sperrschichttemperatur	T _J	-40	165	°C
Lagertemperatur	T _{STG}	-65	175	°C

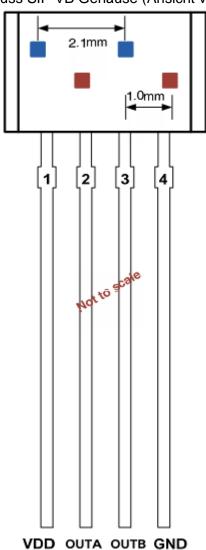
Hinweise: Spannungen, die über die hier aufgeführten Werte hinausgehen, können den Sensor dauerhaft beschädigen. Wenn der Sensor über einen längeren Zeitraum absoluten Höchst-belastungen ausgesetzt wird, kann dies die Zuverlässigkeit des Sensors beeinträchtigen.

² Erforderliche Zeit für die Initialisierung des Sensors.

³ Zeit, die benötigt wird, bis die Schaltpunkte des Ausgangs innerhalb der Spezifikation liegen.

⁴ Entspricht t_{po} + t_{settle} .

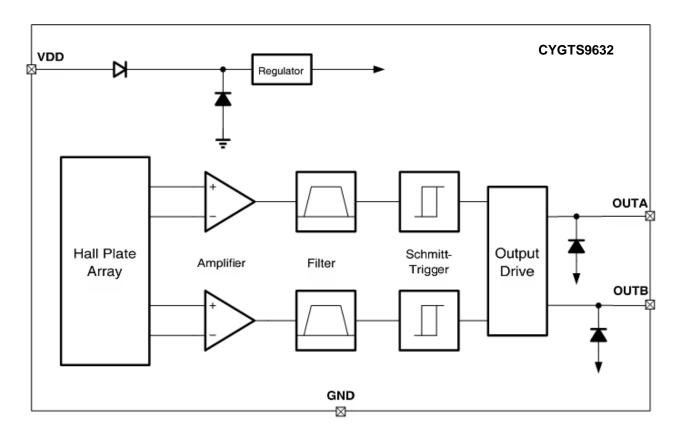
⁵ Die Ausgangsanstiegszeit wird von der RC-Zeitkonstante dominiert.


ESD (Emergency Shutdown System)-Protection

Menschliche Körpermodell-Test (Human Body Model HBM)

Parameter	Symbol	Max.	Einheit	Hinweis
ESD	V _{ESD}	±4.0	kV	Nach dem Standard EIA/JESD22-A114-B-HBM

Stift-Konfiguration


4-Anschluss SIP VB Gehäuse (Ansicht von oben)

Pin Nr.	Symbol	Тур	Beschreibung
1	V_{DD}	Versorgungs-	3.8V to 24V Stromversorgung
		spannung	
2	OUTA	Ausgang	Open-Drain-Ausgang erfordert einen Pull-Up- Widerstand
3	OUTB	Ausgang	Open-Drain-Ausgang erfordert einen Pull-Up- Widerstand
4	GND	Erdung	Erdungsanschluss

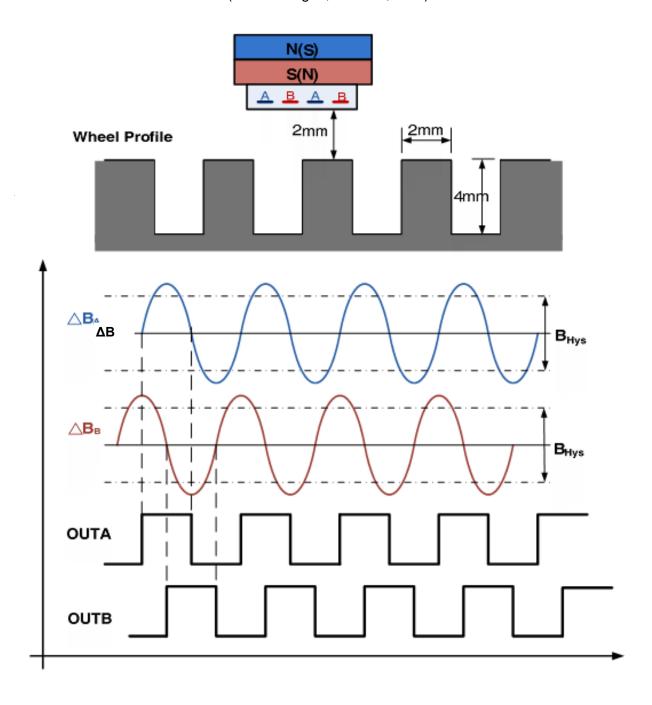
Funktionelles Blockdiagramm

Funktionelle Beschreibung

Der CYGTS9632 integriert zwei unabhängige differentielle Hall-Effekt-Sensoren IC. Der Hall-IC unterstützt vier Hall-Elemente mit rückseitig vorgespanntem Magneten, die das magnetische Profil des ferromagnetischen Zahnradtargets gleichzeitig, aber an unterschiedlichen Punkten erfassen und zwei differentielle interne Analogspannungen erzeugen, die zum präzisen Schalten der digitalen Ausgangssignale verarbeitet werden.

Für jeden der beiden unabhängigen Kanäle erkennt der Sensor die Bewegung und Position von ferromagnetischen Strukturen durch Messung der differentiellen Flussdichte des Magnetfeldes. Änderungen der Feldstärke an der Sensorfläche, die durch ein sich bewegendes Zielzahnrad induziert werden, werden von den beiden integrierten Hall-Elementen erfasst. Die Hall-Elemente erzeugen Signale, die durch eine On-Chip-Elektronik differenziell verstärkt werden. Dieses differentielle Design sorgt für Immunität gegenüber radialen Vibrationen innerhalb des Betriebsluftspaltbereichs des CYGTS9632, indem es das Gleichtaktsignal unterdrückt. Magnetische und systematische Offsets im stationären Zustand werden durch einen On-Chip-Bandpassfilter eliminiert. Dieser Filter bietet auch eine relative Immunität gegen Störungen durch elektromagnetische Quellen.

Der Hall-IC ist selbstkalibrierend und verfügt über einen temperaturkompensierten Verstärker und eine Offset-Kompensationsschaltung. Sein interner Spannungsregler sorgt für eine Unterdrückung des Versorgungsrauschens über den gesamten Betriebsspannungsbereich. Aufgrund des stabilen Verstärkerdesigns und der Offset-Unterdrückungsschaltung wirken sich Temperaturschwankungen nicht wesentlich auf diesen Sensor aus. Die Hall-Elemente und die Signalverarbeitungselektronik sind auf demselben Siliziumsubstrat integriert, wobei ein proprietärer BiCMOS-Prozess verwendet wird.

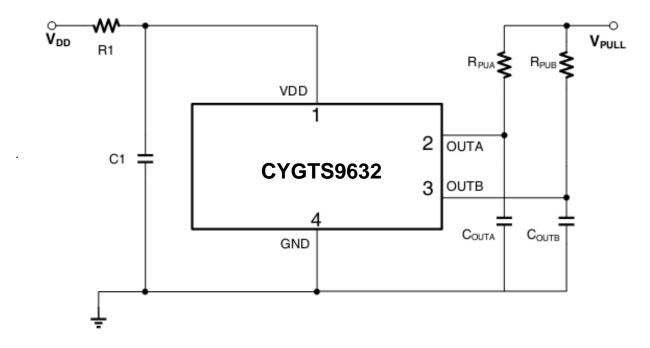

Der Sensor CYGTS9632 wird in einem bleifreien 4-Pin-SIP-Gehäuse mit einem 100% mattverzinnten Leadframe angeboten.


Zahnradabtastung

Im Falle einer ferromagnetischen Zahnradanwendung muss der Sensor IC durch den Süd- oder Nordpol eines Dauermagneten vorgespannt werden, der beide Hallsonden abdecken sollte.

Der maximale Luftspalt hängt von folgenden Parametern ab:

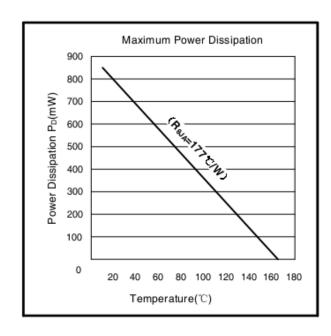
- die Magnetfeldstärke (verwendeter Magnet; Vorinduktion) und
- das verwendete Zahnrad (Abmessungen, Material, usw.)

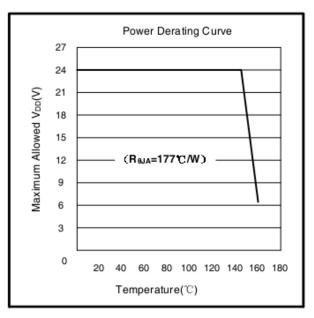


Empfohlene Anwendungen

Der Sensor CYGTS9632 enthält einen On-Chip-Spannungsregler und kann über einen weiten Versorgungsspannungsbereich betrieben werden. Bei Anwendungen, die den Sensor an einer ungeregelten Stromversorgung betreiben, muss ein transienter Schutz extern hinzugefügt werden. Für Anwendungen, die eine geregelte Leitung verwenden, ist möglicherweise weiterhin ein EMI-/RFI-Schutz erforderlich.

Dreileiteranschluss


Komponent	Wert	Einheit
R _{PUA} / R _{PUB}	1.2	kΩ
R1	200	Ω
C1	0.1	μF
C _{OUTA} / C _{OUTB}	1.0	μF


- 1. Pull-up-Widerstand nicht zum Schutz, sondern für den Normalbetrieb erforderlich
- 2. R1 dient zur Verbesserung der CI-Leistung
- 3. COUT ist für verbesserte BCI-Leistung

Thermale Eigenschaften

Symbol	Parameter	Testbedingungen	Wert	Einheit
R_{QJA}	Thermischer Widerstand des	Einlagige Leiterplatte, bei der sich das	177	°C/W
	VB-Gehäses	Kupfer auf die Lötpunkte beschränkt		

Beschreibung der Leistungsreduzierung

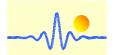
Der Sensor muss unterhalb der maximalen Sperrschichttemperatur des Sensors T_{J(max.)} betrieben werden. Unter bestimmten Kombinationen von Spitzenbedingungen kann ein zuverlässiger Betrieb eine Herabsetzung der zugeführten Leistung oder eine Verbesserung der Wärmeableitungseigenschaften der Anwendung erfordern. Der Wärmewiderstand des Gehäuses, R_{θJA}, ist ein Wert, der die Fähigkeit der Anwendung und des Sensors zusammenfasst, Wärme von der Verbindung über alle Pfade an die Umgebungsluft abzuleiten. Seine Hauptkomponente sind die effektive Wärmeleitfähigkeit K der Leiterplatte, einschließlich benachbarter Bauelemente und Leiterbahnen. Die Strahlung vom Chip durch das Sensorgehäuse, R_{BJC}, ist ein relativ kleiner Bestandteil von R_{BJA}. Umgebungstemperatur, TA und Luftbewegung sind bedeutende externe Faktoren, die durch Überformen gedämpft werden.

Der Effekt unterschiedlicher Leistungspegel (Power Dissipation, PD) kann abgeschätzt werden. Die folgenden Formeln stellen die fundamentalen Beziehungen dar, die verwendet werden, um T_J bei P_D zu schätzen.

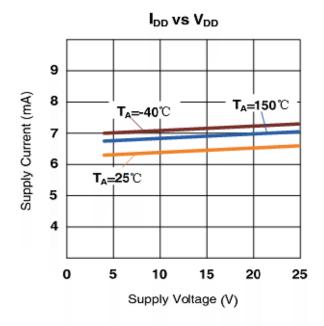
> $P_D=V_{DD} \times I_{DD}$ (1)

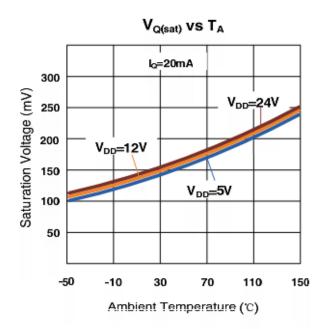
 $\triangle T = P_D x R_{\theta JA}$ (2)

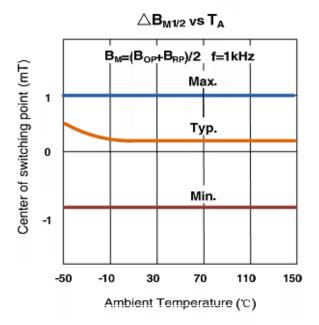
 $T_J = T_A + \triangle T$ (3)

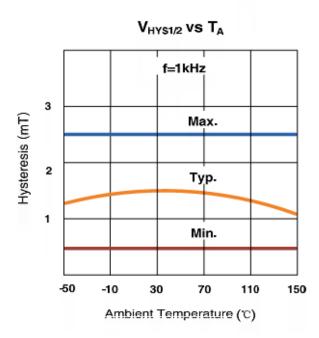

Beispielsweise

 $T_A=25^{\circ}\text{C}$, $V_{DD}=12V$, $I_{DD}=3.5mA$, $R_{\theta JA}=177^{\circ}\text{C/W}$, wir bekommen

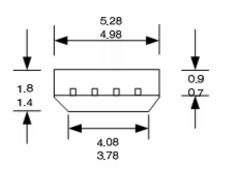

 $P_D = V_{DD} \times I_{DD} = 12V \times 3.5 \text{mA} = 42 \text{mW}$

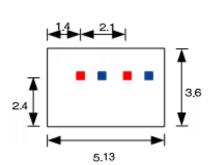

 \triangle T=PD x R θ JA=42mW x 177 °C/W=7.5°C

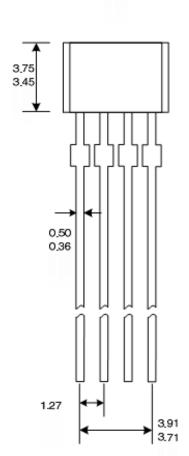

 $T_J = T_A + \triangle T = 25^{\circ}\text{C} + 7.5^{\circ}\text{C} = 32.5^{\circ}\text{C}$

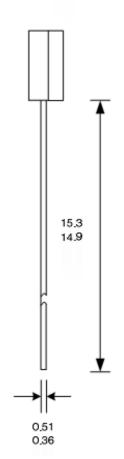


Empirisches Ergebnis





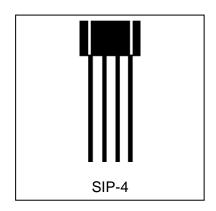



Zeichnung des Gehäuses

4-Terminal VB Package Dimension.mm

Hinweise:

- 1. Genaue Gehäuse- und Leitungskonfiguration nach Wahl des Verkäufers innerhalb der angegebenen Grenzen
- 2. Die Höhe umfasst nicht den Anschnitt
- 3. Wo keine Toleranz angegeben ist, ist das Maß nominal.


CYGTS9633 Hochempfindlicher Geschwindigkeitssensor IC mit zwei Quadraturausgängen

CYGTS9633 ist ein differentieller Hall-Effekt-Sensor-IC mit zwei unabhängigen Kanälen, die Quadratur-Ausgänge liefern. Der Sensor bietet eine hohe Empfindlichkeit und eine überlegene Stabilität über Temperatur und symmetrische Schwellenwerte, um ein stabiles Tastverhältnis zu erreichen. Der integrierte Schaltkreis, der auf dem Hall-Effekt-Prinzip basiert, reagiert auf sich ändernde differentielle Magnetfelder, die durch eisenhaltige Ziele erzeugt werden, wenn sie mit einem Magneten gekoppelt sind. Durch die Verwendung der A- und B-Quadraturausgänge ist der Baustein besonders für die Drehzahl und Richtung von ferromagnetischen Zahnrädern geeignet.

Der Sensor ist in einem 4-poligen Kunststoff-SIP-Gehäuse untergebracht. Er ist bleifrei (Pb) und hat einen 100% mattverzinnten Leadframe.

EIGENSCHAFTEN

- Zwei unabhängige digitale Quadratur-A/B-Ausgänge
- Genaue Nulldurchgangsschaltpunkte
- Süd- und Nordpol-Vorinduktion möglich
- Großer Luftspalt
- Versorgungsspannungsbereich zwischen 3.8V und 24V
- Geringer Stromverbrauch 6,5 mA (typ.)
- Breiter Betriebstemperaturbereich -40°C ~ 150°C
- Überspannungsschutz in allen PIN
- Rückstromschutz im Versorgungsspannungs-PIN (V_{DD})
- Ausgangsschutz gegen elektrische Störungen

ANWENDUNGEN

Automobile und Schwerkraftlastwagen	Industrielle Anwendungen
 Nockenwellen- und Kurbelwellendrehzahl und -position Drehzahl des Getriebes Drehzahlmesser Antischlupf-/Traktionskontrolle 	 Geschwindigkeit des Kettenrads Geschwindigkeit/Abstand des Kettengliedförderers Melder einer Abstellvorrichtung Kostengünstige Hochgeschwindigkeits- Näherungsschalter Tachometer, Zähler.

Gerätsinformation

Teilenummer	Verpackung	Montage	Temperaturbereich	Markierung
CYGTS9633VB	500pcs/Beutel	4-pin SIP	-40°C~150°C	9633

Betriebsbereich

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Back-Bias-Bereich	B _{Bias}	Betrieb	-500		500	mT
Versorgungsspannung	V_{DD}	Betrieb	3.8	12	24	V
Betriebstemperatur	T _A		-40	~	150	°C
Lagerungstemperatur	Ts		-65	~	175	°C

Elektrische und magnetische Eigenschaften

Technische sparameter TA = -40°C bis 150°C, VDD = 5V (sofern nicht anders angegeben)

Parameter	Symbol	Testbedingungen	Min	Тур.	Max	Einheit
Versorgungsspannung	V_{DD}	Betrieb	3.8	12	24	V
Versorgungsstrom	I _{DD}	VDD=3.8 to 24 V	4.5	6.5	8.5	mA
Ausgangssättigungsspannung	V _{sat}	I _{out} =30mA, T _A =25°C		210	400	mV
Ausgangs Leckstrom	I _{Leak}	V _{out} =24V			10	μΑ
Überspannungsschutz bei Versorgungsspannung	V_{SP}	I _{DD} = 10mA	30	35	40	V
Überspannungsschutz an der Ausgangsklemme	V _{OP}	I _{out} =1mA, V _{out} =High	30	35	40	V
Überstromschutz	OCP ¹	T _A =25°C	40			mA
Einschaltzeit	t_{po}^2	V _{DD} >3.8V		3.8	9.0	ms
Einschwingzeit	t _{settle} 3	V _{DD} >3.8V, f=1kHz	0		50	ms
Reaktionszeit	t _{response} 4	V _{DD} >3.8V, f=1kHz	3.8		59	ms
Ausgangsanstiegszeit	T _R ⁵	R1=1kΩ C=20pF		0.4	1.0	μs
Ausgangsabfallzeit	T _F	R1=1kΩ C=20pF		0.35	1.0	μs
Obere Eckfrequenz	fcu	-3dB, einpolige	20			kHz
Untere Eckfrequenz	fcl	-3dB, einpolige			5	Hz
Back-Bias-Bereich	B _{Bias}	Betrieb	-500		500	mT
Arbeitspunkt von Kanal 1	ΔB_{OP1}	f=1kHz, B _{diff} =5mT			0	mT
Freigabepunkt von Kanal 1	ΔB_{RP1}	f=1kHz, B _{diff} =5mT	0			mT
Hysterese von Kanal 1	B _{HYS1}	f=1kHz, ΔB=5mT	0.5	1.5	2.5	mT
Schaltpunkt Mitte Kanal 1	ΔB_{M1}	$(B_{OP} + B_{RP})/2$	-2.0	0	2.0	mT
Arbeitspunkt von Kanal 2	ΔB_{OP2}	f=1kHz, B _{diff} =5mT			0	mT
Freigabepunkt von Kanal 2	ΔB_{RP2}	f=1kHz, B _{diff} =5mT	0			mT
Hysterese von Kanal 2	B _{HYS2}	f=1kHz, ΔB=5mT	0.5	1.5	2.5	mT
Schaltpunkt Mitte Kanal 2	ΔB_{M2}	$(B_{OP} + B_{RP})/2$	-2.0	0	2.0	mT

¹ I_{OUT} ändert den Zustand nicht, wenn IOUT=OCP.

Absolute Grenzwerte

Parameter	Symbol	Minimaler Wert	Maximaler Wert	Einheit
Stromversorgungsspannung	V_{DD}	-30	30	V
Ausgangsstrom der Leistung	I _{DD}	-10	25	mA
Spannung der Ausgangsklemme	V _{OUT}	-0.5	30	V
Stromsenke der Ausgangsklemme	I _{SINK}	0	40	mA
Betriebsumgebungstemperatur	T _A	-40	150	°C
Maximale Sperrschichttemperatur	T_J	-40	165	°C
Lagerungstemperatur	T _{STG}	-65	175	°C

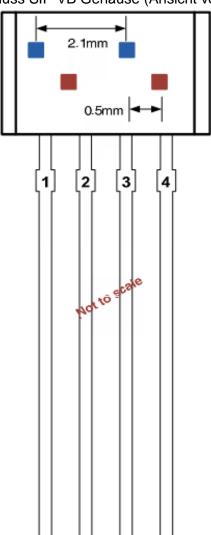
Hinweis: Spannungen, die über die hier aufgeführten Werte hinausgehen, können den Sensor dauerhaft beschädigen. Die Einwirkung von absoluten Höchstleistungsbedingungen über einen längeren Zeitraum kann die Zuverlässigkeit des Sensors beeinträchtigen.

² Erforderliche Zeit zum Initialisieren des Sensors.

³ Zeit, die benötigt wird, damit die Ausgangsschaltpunkte innerhalb der Spezifikation liegen.

⁴ Entspricht t_{po} + t_{settle} .

⁵ Die Anstiegszeit des Ausgangs wird von der RC-Zeitkonstante dominiert.

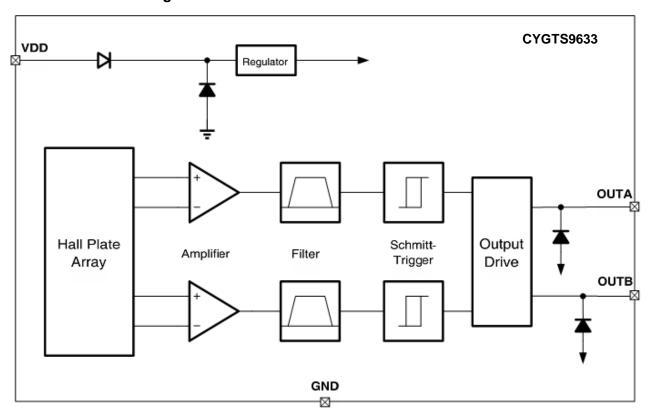

ESD (Emergency Shutdown System)-Protection

Menschliche Körpermodell-Test (Human Body Model HBM)

Parameter	Symbol	Max.	Einheit	Hinweis
ESD	V _{ESD}	±4.0	kV	Nach dem Standard EIA/JESD22-A114-B-HBM

Stift-Konfiguration

4-Anschluss SIP VB Gehäuse (Ansicht von oben)



VDD OUTA OUTB GND

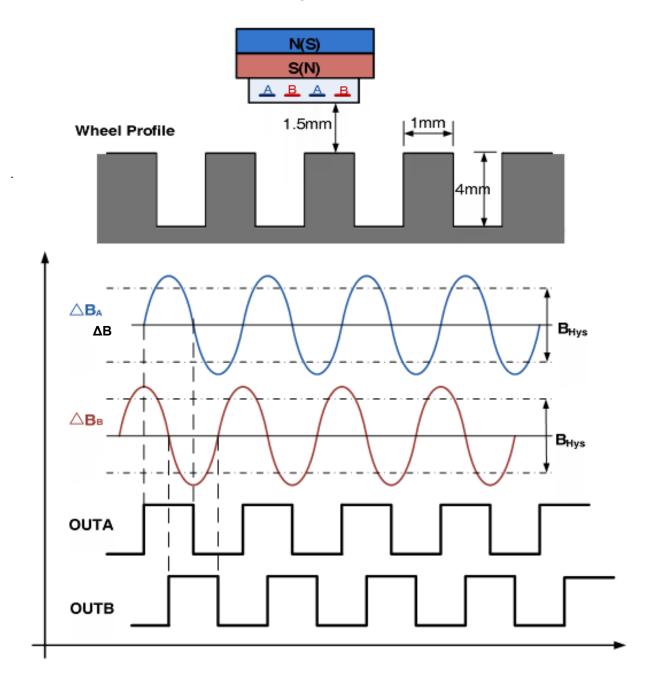
Pin Nr.	Symbol	Тур	Beschreibung
1	V_{DD}	Versorgung	3.8V to 24V power supply
2	OUTA	Ausgang	Open-Drain-Ausgang erfordert einen Pull-Up- Widerstand
3	OUTB	Ausgang	Open-Drain-Ausgang erfordert einen Pull-Up- Widerstand
4	GND	Erdung	Erdungsanschluss

Funktionelles Blockdiagramm

Funktionelle Beschreibung

Der CYGTS9633 integriert zwei unabhängige differentielle Hall-Effekt-Sensoren IC. Der Hall-IC unterstützt vier Hall-Elemente mit rückseitig vorgespanntem Magneten, die das magnetische Profil des ferromagnetischen Zahnradtargets gleichzeitig, aber an unterschiedlichen Punkten erfassen und zwei differentielle interne Analogspannungen erzeugen, die zum präzisen Schalten der digitalen Ausgangssignale verarbeitet werden.

Für jeden der beiden unabhängigen Kanäle erkennt der Sensor die Bewegung und Position von ferromagnetischen Strukturen durch Messung der differentiellen Flussdichte des Magnetfeldes. Änderungen der Feldstärke an der Sensorfläche, die durch ein sich bewegendes Zielzahnrad induziert werden, werden von den beiden integrierten Hall-Elementen erfasst. Die Hall-Elemente erzeugen Signale, die durch eine On-Chip-Elektronik differenziell verstärkt werden. Dieses differentielle Design sorgt für Immunität gegenüber radialen Vibrationen innerhalb des Betriebsluftspaltbereichs des CYGTS9633, indem es das Gleichtaktsignal unterdrückt. Magnetische und systematische Offsets im stationären Zustand werden durch einen On-Chip-Bandpassfilter eliminiert. Dieser Filter bietet auch eine relative Immunität gegen Störungen durch elektromagnetische Quellen.

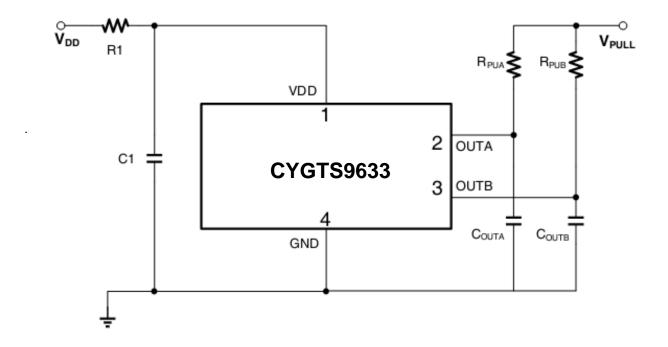

Der Hall-IC ist selbstkalibrierend und verfügt über einen temperaturkompensierten Verstärker und eine Offset-Kompensationsschaltung. Sein interner Spannungsregler sorgt für eine Unterdrückung des Versorgungsrauschens über den gesamten Betriebsspannungsbereich. Aufgrund des stabilen Verstärkerdesigns und der Offset-Unterdrückungsschaltung wirken sich Temperaturschwankungen nicht wesentlich auf diesen Sensor aus. Die Hall-Elemente und die Signalverarbeitungselektronik sind auf demselben Siliziumsubstrat integriert, wobei ein proprietärer BiCMOS-Prozess verwendet wird. Der Sensor CYGTS9633 wird in einem bleifreien 4-Pin-SIP-Gehäuse mit einem 100% mattverzinnten Leadframe angeboten.

Zahnradabtastung

Im Falle einer ferromagnetischen Zahnradanwendung muss der IC durch den Süd- oder Nordpol eines Dauermagneten vorgespannt werden, der beide Hallsonden abdecken sollte.

Der maximale Luftspalt hängt von folgenden Parametern ab:

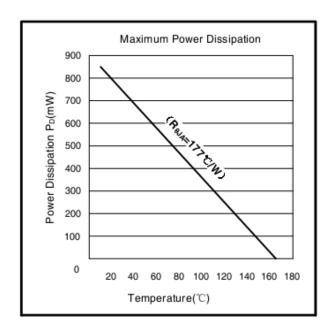
- die Magnetfeldstärke (verwendeter Magnet; Vorinduktion) und
- das verwendete Zahnrad (Abmessungen, Material, usw.)

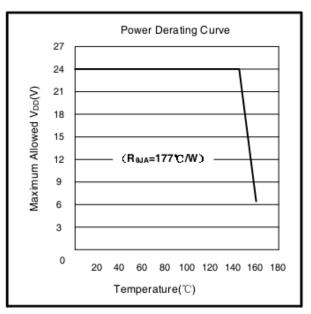


Empfohlene Anwendungen

Der Sensor CYGTS9633 enthält einen On-Chip-Spannungsregler und kann über einen weiten Versorgungsspannungsbereich betrieben werden. Bei Anwendungen, die den Sensor an einer ungeregelten Stromversorgung betreiben, muss ein transienter Schutz extern hinzugefügt werden. Für Anwendungen, die eine geregelte Leitung verwenden, ist möglicherweise weiterhin ein EMI-/RFI-Schutz erforderlich.

Dreileiteranschluss


Komponente	Wert	Einheit
R _{PUA} / R _{PUB}	1.2	kΩ
R1	200	Ω
C1	0.1	μF
C _{OUTA} / C _{OUTB}	1.0	μF


- 1. Pull-up-Widerstand nicht zum Schutz, sondern für den Normalbetrieb erforderlich
- 2. R1 dient zur Verbesserung der CI-Leistung
- 3. COUT ist für verbesserte BCI-Leistung

Thermale Eigenschaften

Symbol	Parameter	Testbedingungen	Wert	Einheit
R_{QJA}	Thermischer Widerstand des	Einlagige Leiterplatte, bei der sich das	177	°C/W
	VB-Gehäuses	Kupfer auf die Lötpunkte beschränkt		

Beschreibung der Leistungsreduzierung

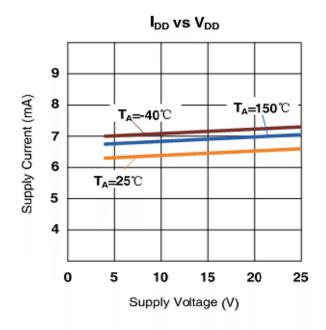
Der Sensor muss unterhalb der maximalen Sperrschichttemperatur des Sensors $T_{J(max.)}$ betrieben werden. Unter bestimmten Kombinationen von Spitzenbedingungen kann ein zuverlässiger Betrieb eine Herabsetzung der zugeführten Leistung oder eine Verbesserung der Wärmeableitungseigenschaften der Anwendung erfordern. Der Wärmewiderstand des Gehäuses, $R_{\theta JA}$, ist ein Wert, der die Fähigkeit der Anwendung und des Sensors zusammenfasst, Wärme von der Verbindung über alle Pfade an die Umgebungsluft abzuleiten. Seine Hauptkomponente sind die effektive Wärmeleitfähigkeit K der Leiterplatte, einschließlich benachbarter Bauelemente und Leiterbahnen. Die Strahlung vom Chip durch das Sensorgehäuse, $R_{\theta JC}$, ist ein relativ kleiner Bestandteil von $R_{\theta JA}$. Umgebungstemperatur, T_A und Luftbewegung sind bedeutende externe Faktoren, die durch Überformen gedämpft werden.

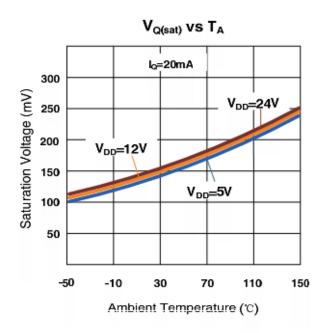
Der Effekt unterschiedlicher Leistungspegel (Power Dissipation, PD) kann abgeschätzt werden. Die folgenden Formeln stellen die fundamentalen Beziehungen dar, die verwendet werden, um T_J bei P_D zu schätzen.

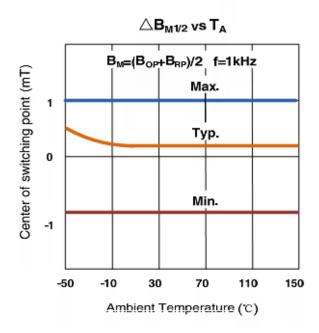
 $P_D=V_{DD} \times I_{DD}$ (1)

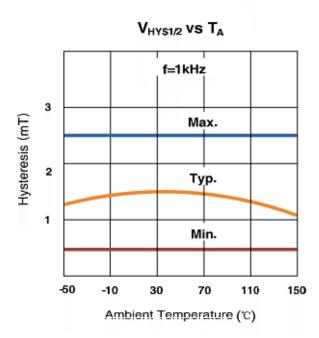
 $\triangle T = P_D x R_{\theta JA}$ (2)

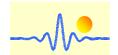
 $TJ=TA+\triangle T$ (3)

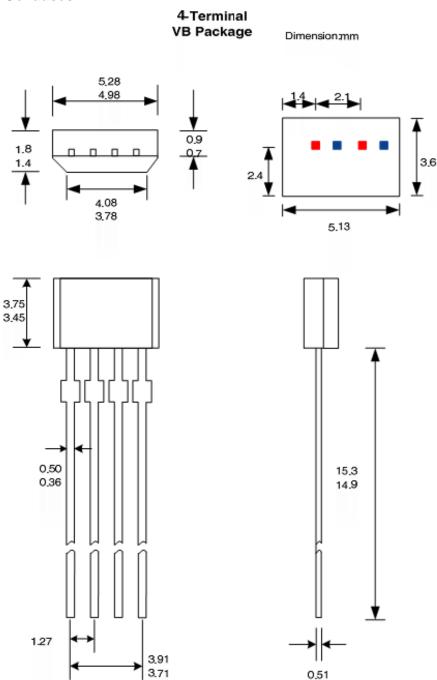

Beispielsweise $T_A=25^{\circ}\text{C}$, $V_{DD}=12V$, $I_{DD}=3.5mA$, $R_{\theta JA}=177^{\circ}\text{C/W}$, wir bekommen

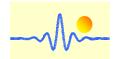

 $P_D = V_{DD} x I_{DD} = 12 V x 3.5 mA = 42 mW$ $\triangle T = P_D x R_{\theta JA} = 42 mW x 177 °C/W = 7.5 °C$


 $T_J = T_A + \triangle T = 25^{\circ}\text{C} + 7.5^{\circ}\text{C} = 32.5^{\circ}\text{C}$




Empirisches Ergebnis



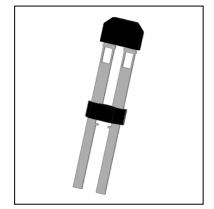

Zeichnung des Gehäuses

Hinweise:

- 1. Genaue Gehäuse- und Leitungskonfiguration nach Wahl des Verkäufers innerhalb der angegebenen Grenzen
- 2. Die Höhe umfasst nicht den Anschnitt
- 3. Wo keine Toleranz angegeben ist, ist das Maß nominal.

0.36

CYGTS9641 Zweileiter-Differenzzahlradsensor mit kontinuierlicher Kalibrierung


Der Differenzial-Hall-Effekt-Sensor CYGTS9641 dient der Bereitstellung von Drehzahlinformationen an moderne Fahrdynamikregelsysteme und ABS. Der Ausgang ist als Zweidraht-Stromschnittstelle ausgeführt. Exzellente Genauigkeit und Empfindlichkeit sind für raue Automotive-Anforderungen mit großem Temperaturbereich, hoher ESD- und EMV-Robustheit spezifiziert.

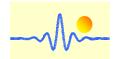
Der geregelte Stromausgang ist für Zweidrahtanwendungen konfiguriert, und der Abstand von 2,0 mm zwischen den beiden Hall-Elementen ist für Messradkonfigurationen mit geringem Abstand optimiert.

Der Sensor ist in einem 2-poligen Kunststoff-SIP-Gehäuse untergebracht. Er ist bleifrei (Pb) und hat einen 100% matt verzinnten Leadframe.

EIGENSCHAFTEN

- Zweidraht-Stromschnittstelle
- Hohe Empfindlichkeit
- Süd- und Nordpol-Vorinduktion möglich
- Großer Luftspalt
- Versorgungsspannung von 4,5V bis 24V
- Großer Betriebstemperaturbereich -40°C ~150°C

ANWENDUNGEN


Automobile und Schwerkraftlastwagen	Industrielle Anwendungen
 Nockenwellen- und Kurbelwellendrehzahl und -position Drehzahl des Getriebes Drehzahlmesser Antischlupf-/Traktionskontrolle 	 Geschwindigkeit des Kettenrads Geschwindigkeit/Abstand des Kettengliedförderers Melder einer Abstellvorrichtung Kostengünstige Hochgeschwindigkeits- Näherungsschalter Tachometer, Zähler.

Sensorinformation

Teilenummer	Verpackung	Montage	Temperaturbereich	Markierung
CYGTS9641TS	500pcs/Beutel	2-pin SIP	-40°C~150°C	9641

Betriebsbereich

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Back-Bias-Bereich	B _{Bias}	Betrieb	-500		500	mT
Versorgungsspannung	V_{DD}	Betrieb	4.5	12	24	V
Betriebstemperatur	T _A		-40	~	150	°C
Lagerungstemperatur	T _S		-65	~	175	°C

Elektrische und magnetische Eigenschaften

Technische Parameter T_A = -40°C bis 150°C, V_{DD} = 5V (sofern nicht anders angegeben)

Parameter	Symbol	Test-Bedingungen	Min.	Тур.	Max.	Einheit
Betriebsversorgungsspannung	V_{DD}	Betrieb	4.5	12	24	V
Betriebsversorgungsstrom	I _{DD(Low)}	V _{DD} =4.5V to 24 V	5.9	7.0	8.4	mA
Betriebsversorgungsstrom	I _{DD(High)}	V _{DD} =4.5V to 24 V	12.0	14.0	16.0	mA
Versorgungsstromverhältnis	R _{CUR}	I _{DD(High)} / I _{DD(Low)}	1.8	2	2.4	
Einschaltzeit	t _{po} ¹	V _{DD} >4.5V		3.8	9.0	ms
Einschwingzeit	t _{settle} ²	V _{DD} >4.5V, f=1kHz	0		50	ms
Reaktionszeit	t _{response} 3	V _{DD} >4.5V, f=1kHz	3.8		59	ms
Ausgangsanstiegszeit	T _R ⁵	R1=1kΩ C=20pF		0.4	1.0	μs
Ausgangsabfallzeit	T _F	R1=1kΩ C=20pF		0.35	1.0	μs
Obere Eckfrequenz	fcu	-3dB, einpolig	15			kHz
Untere Eckfrequenz	fcl	-3dB, einpolig			5	Hz
Back-Bias-Bereich	B _{Bias}	Betrieb	-500		500	mT
Betriebspunkt	ΔB_{OP1}	f=1kHz, B _{diff} =5mT			0	mT
Freigabepunkt	ΔB_{RP1}	f=1kHz, B _{diff} =5mT	0			mT
Hysterese	B _{HYS1}	f=1kHz, ΔB=5mT	0.7	1.3	2.8	mT
Mitte der Schaltpunkte	ΔB_{M1}	(B _{OP} + B _{RP})/2	-2.0	0	2.0	mT

¹ Erforderliche Zeit für die Initialisierung des Sensors.

Absolute Grenzwerte

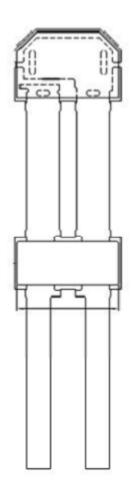
Parameter	Symbol	Minimalwert	Maximalwert	Einheit
Stromversorgungsspannung	V_{DD}	-0.5	30	V
Betriebsumgebungstemperatur	T _A	-40	150	°C
Maximale Sperrschichttemperatur	T_J	-55	165	°C
Lagerungstemperatur	T _{STG}	-65	175	°C

Hinweis: Belastungen, die über die hier aufgeführten hinausgehen, können den Sensor dauerhaft beschädigen. Die Einwirkung von absoluten Höchstleistungsbedingungen über einen längeren Zeitraum kann die Zuverlässigkeit des Sensors beeinträchtigen.

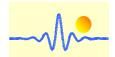
ESD (Emergency Shutdown System)-Protection

Menschliche Körpermodell-Test (Human Body Model HBM)

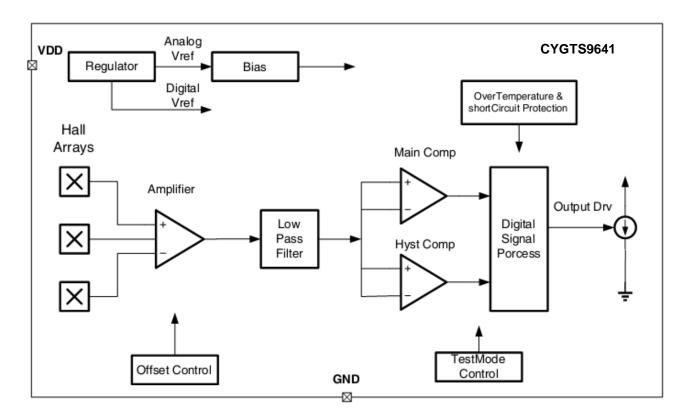
Parameter	Symbol	Max.	Einheit	Hinweis
ESD	V_{ESD}	±8.0	kV	Nach dem Standard EIA/JESD22-A114-B-HBM


² Zeit, die benötigt wird, bis die Ausgangsschaltpunkte innerhalb der Spezifikation liegen.

³ Entspricht t_{po} + t_{settle}


Stift-Konfiguration

2-Anschluss SIP TS Gehäuse (Ansicht von oben)



VDD GND

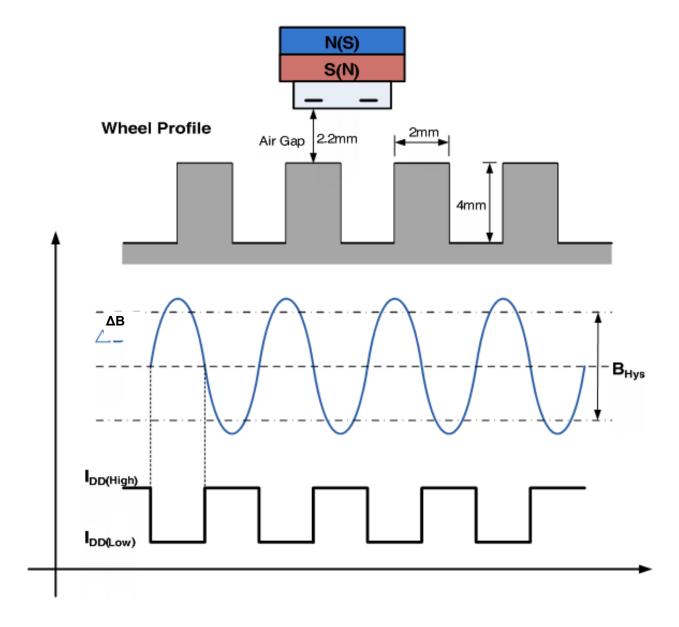
Pin Nr.	Symbol	Тур	Beschreibung
1	V_{DD}	Versorgungsspannung	3.8V bis 24V Versorgungsspannung
2	GND	Erduna	Erdungsklemme

Funktionelles Blockdiagramm

Funktionelle Beschreibung

Der CYGTS9641 ist ein optimierter integrierter Hall-Effekt-Schaltkreis, der eine benutzerfreundliche Lösung für ferromagnetische Messzahnradabtastung in Zweidraht-anwendungen bietet. Dieses kleine Gehäuse lässt sich leicht montieren und kann in Verbindung mit einer Vielzahl von Messobjektformen und -größen verwendet werden.

Der integrierte Schaltkreis enthält einen Dual-Element-Hall-Effekt-Sensor und eine Signalverarbeitung, die auf differentielle magnetische Signale umschaltet, die von einem ferromagnetischen Messzahnrad erzeugt werden. Die Schaltung enthält eine hochentwickelte digitale Schaltung zur Reduzierung von System-Offsets und zur Kalibrierung der Verstärkung für luftspaltunabhängige Schaltpunkte.

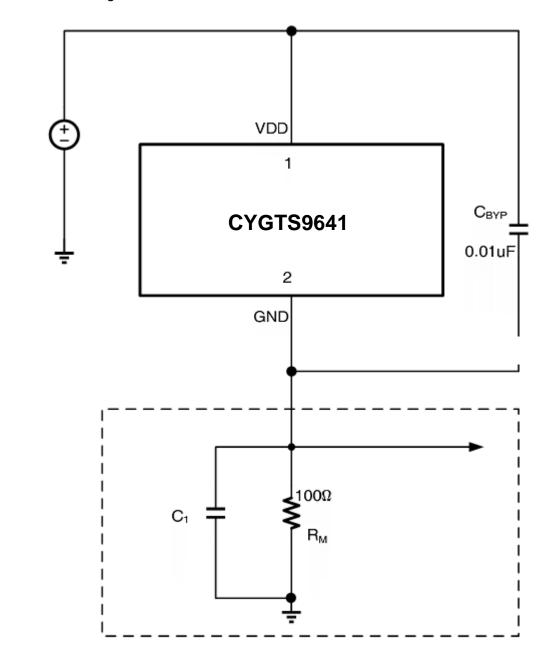

Der geregelte Stromausgang ist für Zweidrahtanwendungen konfiguriert und der Sensor eignet sich ideal für die Erfassung von Geschwindigkeits- und Tastverhältnisinformationen in ABS (Antiblockiersystem). Der Abstand von 2,0 mm zwischen den dualen Hall-Elementen ist für Messzahnräder mit kleinem Abstand optimiert. Das Gehäuse ist frei von Blei (Pb) und besteht zu 100 % aus einer matten Zinn-Bleirahmenbeschichtung.

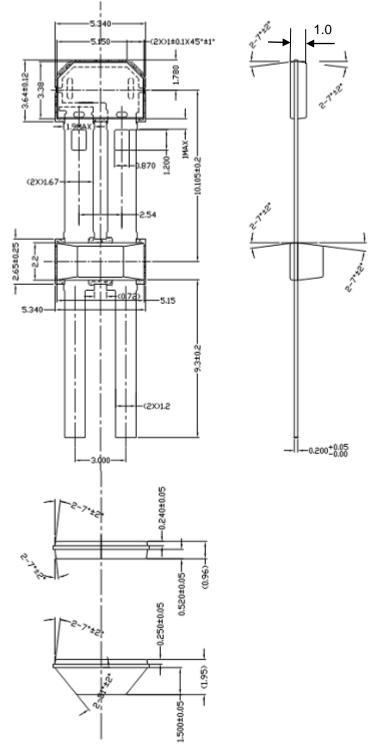
Zahnradabtastung

Im Falle einer ferromagnetischen Zahnradanwendung muss der IC durch den Süd- oder Nordpol eines Dauermagneten vorgespannt werden, der beide Hallsonden abdecken sollte.

Der maximale Luftspalt hängt von folgenden Parametern ab:

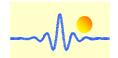
- die Magnetfeldstärke (verwendeter Magnet; Vorinduktion) und
- das verwendete Zahnrad (Abmessungen, Material, usw.)




Empfohlene Anwendungen

Das CYGTS9641 enthält einen On-Chip-Spannungsregler und kann über einen weiten Versorgungsspannungsbereich betrieben werden.

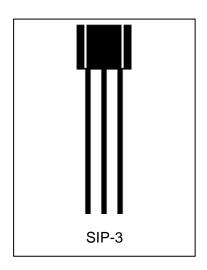
Zwei-Draht-Verbindung



Zeichnung des Gehäuses

Hinweise:

- 1. Genaue Gehäuse- und Leitungskonfiguration nach Wahl des Verkäufers innerhalb der angegebenen Grenzen
- 2. Die Höhe umfasst nicht den Anschnitt
- 3. Wo keine Toleranz angegeben ist, ist das Maß nominal.



CYGTS9801 Selbsteinstellender Halleffekt Zahnradsensor IC

Der Sensor CYGTS9801 ist ein anspruchsvoller Hall-Effekt Zahnradsensor IC, mit einem auf dem Chip verbauten 12-Bit A/D Wandler und einer Logik, die eine digitale Abtastungs- und Halteschaltung darstellt. Ein separater 6-Bit-D/A-Wandler stellt eine feste Hysterese ein. Der Sensor hat keine Chopper-Verzögerung. Er verwendet eine einzelne Hall-Platte, die resistent gegen rotierende Ausrichtungsprobleme ist. Der Bias-Magnet kann 1000GS bis 4000Gs aufweisen. Wird das Signal abgetastet, erkennt die Logik eine Erhöhung oder Verringerung der Flussdichte. Der Ausgang wird auf BOP eingeschaltet, nachdem der magnetische Fluss den Höhepunkt erreicht und um einen Betrag gleich der Hysterese gesenkt hat. Ebenso wird der Ausgang auf BRP ausgeschaltet, nachdem der Fluss den Minimalwert erreicht und um einen Zusatzbetrag gleich der Hysterese zugenommen hat.

Eigenschaften

- Hohe Empfindlichkeit
- Digitales Ausgangssignal
- NULL-Drehzahlerfassung
- Kurzschluss-Schutz
- Unempfindlich gegen Orientierung
- Breiter Betriebsspannungsbereich
- Selbsteinstellender magnetischer Bereich
- Integrierter 12 Bit A/D-Wandler
- Hoher Drehgeschwindigkeitsbetrieb
- Keine Chopper-Verzögerungs-Anwendungen
- RoHS-konform

Anwendungen

Automobile und Schwerkraftlastwagen:

- Nockenwellen- und Kurbelwellengeschwindigkeit und -position
- Geschwindigkeitsmessung
- Tachometer
- Antriebssteuerung und Blockierschutz

Industrielle Anwendung:

- Geschwindigkeit eines Kettenrads
- Geschwindigkeit und Hub des Kettentransportbands
- Melder einer Abstellvorrichtung
- Kostengünstiger Hochgeschwindigkeits-Näherungsschalter
- Tachometer, Zähler.

Magnetische Spezifikationen

DC Betriebsparameter T_A=-40°C bis 150°C, VDD=4.0V bis 24V (sofern nicht anders angegeben)

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Rück-Bias-Bereich	B _{Bias}	Betrieb	-30		4000	Gs
Linearer Bereich		V _{DD} =12V	500		5000	Gs
Hysteresis	B _{hys}		10		80	Gs

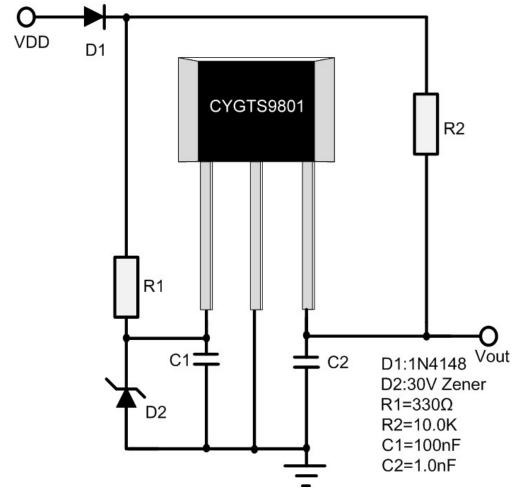
10Gs = 1mT

Tel.: +49 (0)8121-2574100 Fax: +49 (0)8121-2574101 Email: info@chenyang-gmbh.com http://www.chenyang-gmbh.com

DC Betriebsparameter T_A=-40°C bis 150°C, VDD=4.0V bis 24V (sofern nicht anders angegeben)

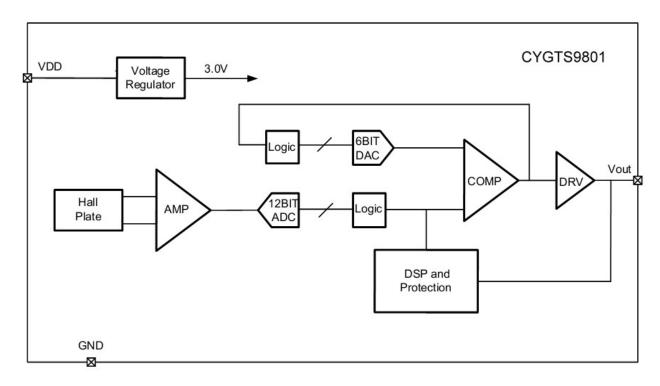
Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Versorgungsspannung	V_{DD}	Betrieb	4.0	12	24	V
Vereeraungeetrem	1	V _{DD} =12V	1.5	3.0	4.5	mA
Versorgungsstrom	I _{DD}	$V_{DD} = 4.0 V \sim 30 V$	1.0		6.0	mA
Spannungshochlaufstatus	Pos	$V_{DD} > V_{DD \text{ (min)}}$	Н	Н	Н	
Leckstrom	I _{Leak}	V _{out} =4.0V ~ 30V			10	mA
Ausgangsstrom	l _{out}	Betrieb			25	mA
Gesättigte Ausgangsspannung	V_{sat}	V _{DD} =12V, I _{out} =25mA			600	mV
Ausgangsstromgrenze	I _{limit}	V _{DD} =12V	50	100	150	mA
Ausgang-Kurzschluss-	T _{Fault}	Fehler	10		20	μs
Abschaltung						
Taktfrequenz	F _{clk}	Betrieb	400	500	600	kHz
Anstiegszeit am Ausgang	T _r	VDD=12V, R1=1.0kΩ			400	ns
		C=10pF				
Abfallzeit am Ausgang	T _f	VDD=12V, R1=1.0kΩ			400	ns
		C=10pF				
Frequenzbandbreite	BW	Betrieb			15	kHz
Thermischer Widerstand	RTH	Betrieb			200	°C/Watt

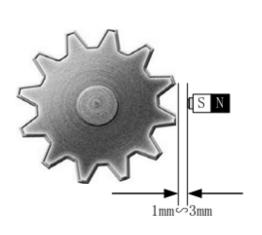
Absolute Grenzwerte


Parameter	Minimalwert	Maximalwert
Versorgungsspannung V _{DD}	-0.3V	30V
Ausgangsspannung Vo	-0.3V	30V
Versorgungsstrom I _{DD}		50mA
Ausgangsstrom I _{out}		30mA
Ausgangsstrom (Fehler) I _{fault}		200mA
Sperrschichttemperatur, T _J (5000h)		150°C
Sperrschichttemperatur, T _J (2000h)		160°C
Sperrschichttemperatur, T _J (1000h)		170°C
Sperrschichttemperatur, T _J (100h)		180°C
Betriebstemperaturbereich	-40°C	150°C
Lagertemperaturbereich	-65°C	150°C

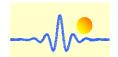
ESD (Emergency Shutdown System) Schutz des Notabschaltsystems

Menschliche Körpermodell-Test (Human Body Model HBM)


Parameter	Symbol	Max.	Einheit	Hinweis
ESD	V _{ESD}	8	kV	Nach Standard EIA/JESD22-A114-B-HBM

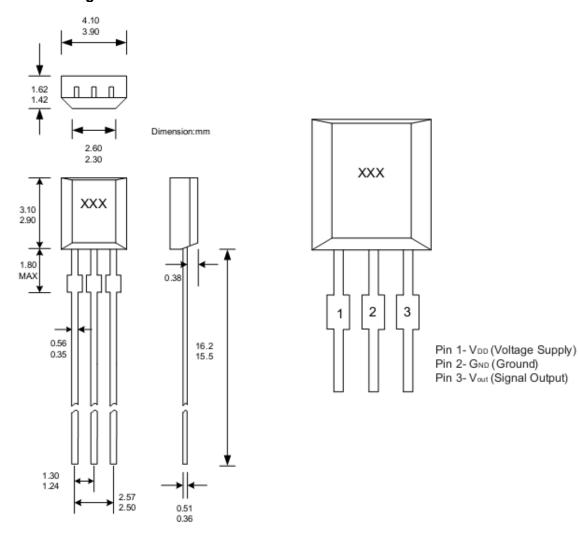



Stiftnummer	Name	Funktion
1	VDD	Versorgungsspannung
2	GND	Masse
3	Vout	Signalausgang

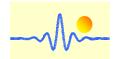

Zahnraddetektion

Im Fall von ferromagnetischer Messzahnrad-Anwendung muss der IC mit dem Südpol eines Permanentmagneten (maximal 4000Gs) vormagnetisiert werden. Beim Zusammenbau des Sensorsystems muss ein Magnet mit einem magnetischen Fluss von 1000Gs-4000Gs gewählt werden. Normalerweise wird die nicht markierte Seite des ICs zum Südpol des Magneten ausgerichtet. Der Magnet sollte an der Rückseite (nicht markierte Seite) des IC mit einem Klebstoff oder geeigneten Epoxy angebracht werden. Der Sensor CYGTS9801 ist über einen weiten Bereich des Magnet-Flusses "selbstanpassend", um jegliches Trimmen in der Anwendung zu vermeiden. Im Einschaltzustand des Chips wird der Ausgang auf den hohen Zustand zurückgesetzt, unabhängig vom magnetischen Feld. Der Ausgang wird nur geändert, nachdem der erste min. Wert erkannt wurde. Der zurückgesetzte Zustand enthält keine Informationen über das Feld.

http://www.chenyang-gmbh.com


Wenn die Versorgungsspannung des Chips langsam ansteigt, ist der zurückgesetzte Zustand nicht stabil. In diesem Fall kann das Ausgangssignal eventuell nicht auf die höheren Pegel steigen.

Der maximale Luftspalt hängt von folgendem ab:


- -der magnetischen Feldstärke (Magnet; vor Induktion)
- -dem verwendeten Zahnrad (Abmessungen, Material, etc.)

Es wird dringend empfohlen, einen externen Keramik Bypass-Kondensator von 10nF bis 1uF zwischen der Versorgung und der Masse des Hallsensors anzuschließen, um Hintergrundräusche zu reduzieren. Der Serienwiderstand in Kombination mit dem Bypass-Kondensator stellt einen Filter für EMC-Pulse dar. Der Pull-up-Widerstand sollte so gewählt werden, dass er den Strom des Ausgangs-Transistors begrenzt und der maximale kontinuierliche Ausgangsstrom des Sensors nicht überschritten wird.

Physikalische Eigenschaften

- 1. exakte Gehäuse und Leiterkonfiguration nach Angaben des Herstellers in den dargestellten Grenzen
- 2. die Dimension ist nominal, wenn keine Toleranz angegeben ist.

CYGTS9802 Selbsteinstellender Halleffekt Zahnradsensor IC mit komplementär- Ausgang

Der Sensor CYGTS9802 ist ein anspruchsvoller Hall-Effekt Zahnradsensor IC, mit einem auf dem Chip verbauten 12-Bit A/D Wandler und einer Logik, die eine digitale Abtastungs- und Halteschaltung darstellt. Ein separater 6-Bit-D/A-Wandler stellt eine feste Hysterese ein. Der Sensor hat keine Chopper-Verzögerung. Er verwendet eine einzelne Hall-Platte, die resistent gegen rotierende Ausrichtungsprobleme ist. Der Bias-Magnet kann 1000GS bis 4000Gs aufweisen. Wird das Signal abgetastet, erkennt die Logik eine Erhöhung oder Verringerung der Flussdichte. Der Ausgang wird auf BOP eingeschaltet, nachdem der magnetische Fluss den Höhepunkt erreicht und um einen Betrag gleich der Hysterese gesenkt hat. Ebenso wird der Ausgang auf BRP ausgeschaltet, nachdem der Fluss den Minimalwert erreicht und um einen Zusatzbetrag gleich der Hysterese zugenommen hat. Die komplementären-Ausgänge (OUT und OUTB) sind in diesem Sensor vorgesehen. Der Ausgang OUTB schaltet ab, nachdem der Fluss den Höhepunkt erreicht und um einen Betrag in Höhe der Hysterese gesenkt hat. Ähnlich schaltet der Ausgang OUTB ein, nachdem der Fluss seinen Minimalwert erreicht und um einen Zusatzbetrag gleich der Hysterese zugenommen hat.

Eigenschaften

- Hohe Empfindlichkeit
- Digitales Ausgangssignal
- NULL-Drehzahlerfassung
- Kurzschluss-Schutz
- Unempfindlich gegen Orientierung
- Breiter Betriebsspannungsbereich
- Selbsteinstellender magnetischer Bereich
- Integrierter 12 Bit A/D-Wandler
- Hoher Drehgeschwindigkeitsbetrieb
- Keine Chopper-Verzögerungs-Anwendungen
- RoHS-konform

SIP-4

Anwendungen

Automobile und Schwerkraftlastwagen:

- Nockenwellen- und Kurbelwellengeschwindigkeit und -position
- Geschwindigkeitsmessung
- Tachometer
- Antriebssteuerung und Blockierschutz

Industrielle Anwendung:

- Geschwindigkeit eines Kettenrads
- Geschwindigkeit und Hub des Kettentransportbands
- Melder einer Abstellvorrichtung
- Kostengünstiger Hochgeschwindigkeits-Näherungsschalter
- Tachometer, Zähler.

Magnetische Spezifikationen

DC Betriebsparameter T_A=-40°C bis 150°C, VDD=4.0V bis 24V (sofern nicht anders angegeben)

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Rück-Bias-Bereich	B _{Bias}	Betrieb	-30		4000	Gs
Linearer Bereich		V _{DD} =12V	500		5000	Gs
Hysteresis	B _{hys}		10		80	Gs

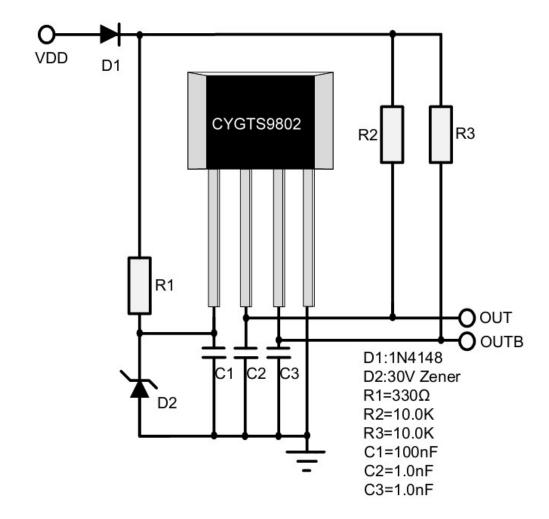
10Gs = 1mT

Tel.: +49 (0)8121-2574100 Fax: +49 (0)8121-2574101 Email: info@chenyang-gmbh.com http://www.chenyang-gmbh.com

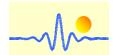
DC Betriebsparameter T_A=-40°C bis 150°C, VDD=4.0V bis 24V (sofern nicht anders angegeben)

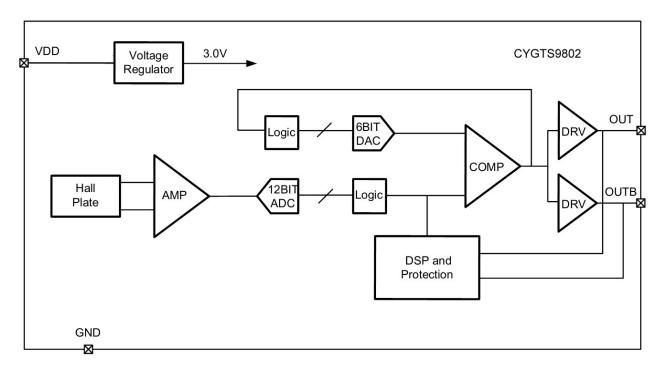
Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Versorgungsspannung	V_{DD}	Betrieb	4.0	12	24	V
Vorcorgungestrom		V _{DD} =12V	1.5	3.0	4.5	mA
Versorgungsstrom	I _{DD}	V _{DD} = 4.0V ~ 30V	1.0		6.0	mA
Spannungshochlaufstatus	Pos _(OUT)	$V_{DD} > V_{DD \text{ (min)}}$	Н	Н	Н	
Sparificingshochladistatus	Pos _(OUTB)	VDD VDD (min)	L	L	L	
Leckstrom	I _{Leak}	V _{out} =4.0V ~ 30V			10	mA
Ausgangsstrom	l _{out}	Betrieb			25	mA
Gesättigte Ausgangsspannung	V_{sat}	V _{DD} =12V, I _{out} =25mA			600	mV
Ausgangsstromgrenze	I _{limit}	V _{DD} =12V	50	100	150	mA
Ausgang-Kurzschluss-	T_{Fault}	Fehler	10		20	μs
Abschaltung						
Taktfrequenz	F _{clk}	Betrieb	400	500	600	kHz
Anstiegszeit am Ausgang	T _r	VDD=12V, R1=1.0kΩ			400	ns
•		C=10pF				
Abfallzeit am Ausgang	T _f	VDD=12V, R1=1.0kΩ			400	ns
		C=10pF				
Frequenzbandbreite	BW	Betrieb			15	kHz
Thermischer Widerstand	RTH	Betrieb			200	°C/Watt

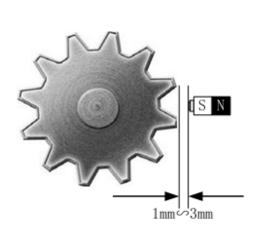
Absolute Grenzwerte

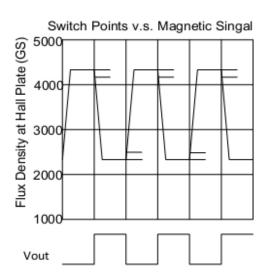

Parameter	Minimalwert	Maximalwert
Versorgungsspannung V _{DD}	-0.3V	30V
Ausgangsspannung Vo	-0.3V	30V
Versorgungsstrom I _{DD}		50mA
Ausgangsstrom I _{out}		30mA
Ausgangsstrom (Fehler) I _{fault}		200mA
Sperrschichttemperatur, T _J (5000h)		150°C
Sperrschichttemperatur, T _J (2000h)		160°C
Sperrschichttemperatur, T _J (1000h)		170°C
Sperrschichttemperatur, T _J (100h)		180°C
Betriebstemperaturbereich	-40°C	150°C
Lagertemperaturbereich	-65°C	150°C

ESD (Emergency Shutdown System) Schutz des Notabschaltsystems


Menschliche Körpermodell-Test (Human Body Model HBM)

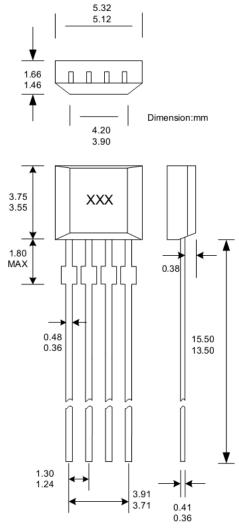

Parameter	Symbol	Max.	Einheit	Hinweis
ESD	V_{ESD}	8	kV	Nach Standard EIA/JESD22-A114-B-HBM

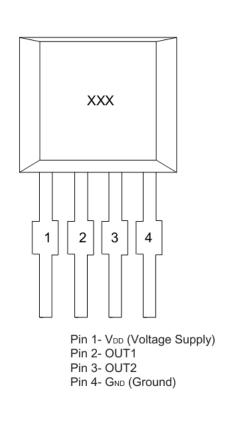



Stiftnummer	Name	Funktion			
1	VDD	Versorgungsspannung			
2	OUT	Signalausgang			
3	OUTB	komplementär-Signalausgang			
4	GND	Masse			

Zahnraddetektion

Im Fall von ferromagnetischer Messzahnrad-Anwendung muss der IC mit dem Südpol eines Permanentmagneten (maximal 4000Gs) vormagnetisiert werden. Beim Zusammenbau des Sensorsystems muss ein Magnet mit einem magnetischen Fluss von 1000Gs-4000Gs gewählt werden. Normalerweise wird die nicht markierte Seite des ICs zum Südpol des Magneten ausgerichtet. Der Magnet sollte an der Rückseite (nicht markierte Seite) des IC mit einem Klebstoff oder geeigneten Epoxy angebracht werden. Der Sensor CYGTS9802 ist über einen weiten Bereich des Magnet-Flusses "selbstanpassend", um jegliches Trimmen in der Anwendung zu vermeiden. Im Einschaltzustand des Chips wird der Ausgang auf den hohen Zustand zurückgesetzt, unabhängig vom magnetischen Feld. Der Ausgang wird nur geändert, nachdem der erste min. Wert erkannt wurde. Der zurückgesetzte Zustand enthält keine Informationen über das Feld.


Wenn die Versorgungsspannung des Chips langsam ansteigt, ist der zurückgesetzte Zustand nicht stabil. In diesem Fall kann das Ausgangssignal eventuell nicht auf die höheren Pegel steigen.


Der maximale Luftspalt hängt von folgendem ab:

- -der magnetischen Feldstärke (Magnet; vor Induktion)
- -dem verwendeten Zahnrad (Abmessungen, Material, etc.)

Es wird dringend empfohlen, einen externen Keramik Bypass-Kondensator von 10nF bis 1uF zwischen der Versorgung und der Masse des Hallsensors anzuschließen, um Hintergrundräusche zu reduzieren. Der Serienwiderstand in Kombination mit dem Bypass-Kondensator stellt einen Filter für EMC-Pulse dar. Der Pull-up-Widerstand sollte so gewählt werden, dass er den Strom des Ausgangs-Transistors begrenzt und der maximale kontinuierliche Ausgangsstrom des Sensors nicht überschritten wird.

Physikalische Eigenschaften

- 1. exakte Gehäuse- und Leiterkonfiguration nach Angaben des Herstellers in den dargestellten Grenzen
- 2. die Dimension ist nominal, wenn keine Toleranz angegeben ist.

CYGTS9803 Selbsteinstellender Hall-Effekt Zahnradsensor IC mit Doppelkanal-Ausgängen

Der Sensor CYGTS9803 ist ein Zweikanal-Zahnradsensor mit zwei Hall- Sensorelementen, jeweils einem separaten digitalen Ausgang für Geschwindigkeitsmessung und für die Richtungserkennung. Der Sensor hat keine Chopper-Verzögerung. Er verwendet zwei Hall-Platten, die resistent gegen rotierende Ausrichtungsprobleme sind. Der Bias-Magnet kann 1000GS bis 4000Gs aufweisen. Wird das Signal abgetastet, erkennt die Logik eine Erhöhung oder Verringerung der Flussdichte. Die Zweikanal-Ausgänge (OUTA und OUTB) werden im Sensor zur Verfügung gestellt. Der Ausgang OUTA wird auf BOP eingeschaltet, nachdem der magnetische Fluss den Höhepunkt erreicht hat und um einen Betrag gleich der Hysterese gesenkt wird. Ebenso wird der Ausgang OUTA auf BRP ausgeschaltet, nachdem der Fluss den Minimalwert erreicht und ein Zusatzbetrag gleich der Hysterese zugenommen hat. Der Ausgang OUTB hat die gleiche Funktion wie OUTA. Aufgrund der Fluss-Phasen-Sequenzierung gibt es eine Phasenverschiebung zwischen OUTA und OUTB, die zur Bestimmung der Drehrichtung des Messzahnrads verwendet werden kann.

Eigenschaften

- Hohe Empfindlichkeit
 - Zwei übereinstimmende Halleffekt-Schalter auf einem Chip
 - 1,4 mm Hall-Element Abstand
 - Doppelkanal-Ausgangssignal
 - Wahre NULL Drehzahlerfassung
 - Kurzschluss-Schutz
 - Unempfindlich gegen Orientierung
 - Breiter Betriebsspannungsbereich
 - Selbsteinstellender magnetischer Bereich
 - Hoher Drehgeschwindigkeitsbetrieb
 - Keine Chopper-Verzögerungs-Anwendungen
 - RoHS-konform

SIP-4

Anwendungen

Automobile und Schwerkraftlastwagen:

- Nockenwellen- und Kurbelwellengeschwindigkeit und -position
- Geschwindigkeitsmessung
- Tachometer
- Antriebssteuerung und Blockierschutz

Industrielle Anwendung:

- Geschwindigkeit eines Kettenrads
- Geschwindigkeit und Hub des Kettentransportbands
- Melder einer Abstellvorrichtung
- Kostengünstiger Hochgeschwindigkeits-Näherungsschalter
- Tachometer, Zähler.

Magnetische Spezifikationen

DC Betriebsparameter T_A=-40°C bis 150°C, VDD=4.0V bis 24V (sofern nicht anders angegeben)

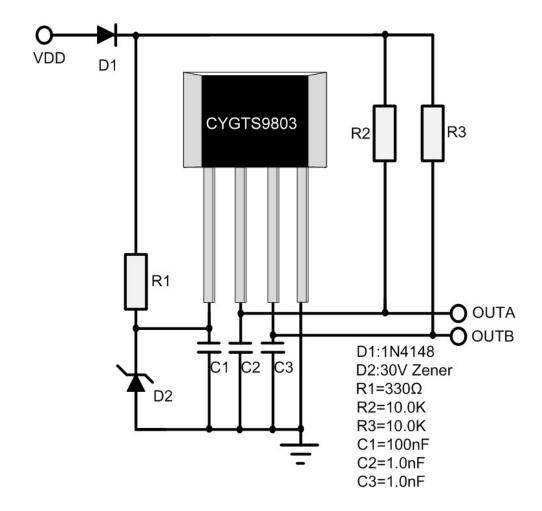
Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Rück-Bias-Bereich	B _{Bias}	Betrieb	-30		4000	Gs
Linearer Bereich		V _{DD} =12V	500		5000	Gs
Hysteresis	B _{hys}		10		80	Gs

10Gs = 1mT

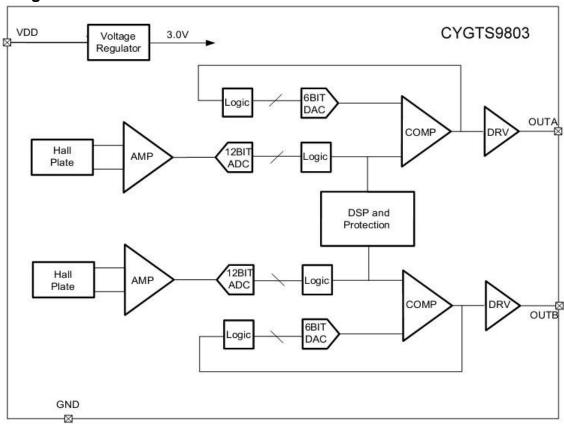
DC Betriebsparameter T_A=-40°C bis 150°C, VDD=4.0V bis 24V (sofern nicht anders angegeben)

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Versorgungsspannung	V_{DD}	Betrieb	4.0	12	24	V
Vorgorgungaatrom	1	V _{DD} =12V	5.0	7.0	9.0	mA
Versorgungsstrom	I _{DD}	V _{DD} = 4.0V ~ 30V	2.0		12.0	mA
Spannungshochlaufstatus	Pos _(OUTA)	V > V	Н	Н	Н	
Sparifiungshochlaufstatus	Pos _(OUTB)	$V_{DD} > V_{DD \text{ (min)}}$	Н	Н	Н	
Leckstrom	I _{Leak}	V _{out} =4.0V ~ 30V			10	mA
Ausgangsstrom	l _{out}	Betrieb			25	mA
Gesättigte Ausgangsspannung	V_{sat}	V _{DD} =12V, I _{out} =25mA			600	mV
Ausgangsstromgrenze	I _{limit}	V _{DD} =12V	50	100	150	mA
Ausgang-Kurzschluss-	T _{Fault}	Fehler	10		20	μs
Abschaltung						
Taktfrequenz	F _{clk}	Betrieb	400	500	600	kHz
Anstiegszeit am Ausgang	T _r	VDD=12V, R1=1.0kΩ			400	ns
		C=10pF				
Abfallzeit am Ausgang	T _f	VDD=12V, R1=1.0kΩ			400	ns
		C=10pF				
Frequenzbandbreite	BW	Betrieb			15	kHz
Thermischer Widerstand	RTH	Betrieb			200	°C/Watt

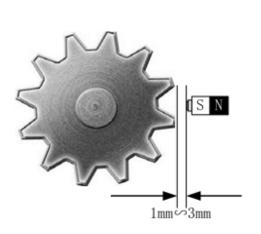
Absolute Grenzwerte

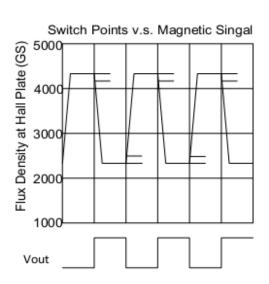

Parameter	Minimalwert	Maximalwert
Versorgungsspannung V _{DD}	-0.3V	30V
Ausgangsspannung Vo	-0.3V	30V
Versorgungsstrom I _{DD}		50mA
Ausgangsstrom I _{out}		30mA
Ausgangsstrom (Fehler) I _{fault}		200mA
Sperrschichttemperatur, T _J (5000h)		150°C
Sperrschichttemperatur, T _J (2000h)		160°C
Sperrschichttemperatur, T _J (1000h)		170°C
Sperrschichttemperatur, T _J (100h)		180°C
Betriebstemperaturbereich	-40°C	150°C
Lagertemperaturbereich	-65°C	150°C

ESD (Emergency Shutdown System) Schutz des Notabschaltsystems

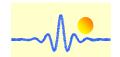

Menschliche Körpermodell-Test (Human Body Model HBM)

Parameter	Symbol	Max.	Einheit	Hinweis
ESD	V _{ESD}	8	kV	Nach Standard EIA/JESD22-A114-B-HBM





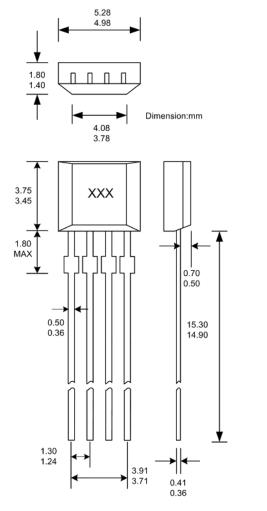
Stiftnummer	Name	Funktion
1	VDD	Versorgungsspannung
2	OUTA	Signalausgang OUTA
3	OUTB	Signalausgang OUTB
4	GND	Masse

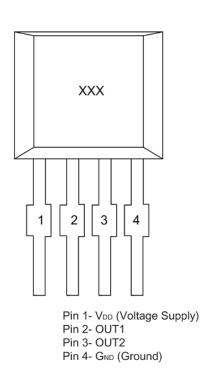


Zahnraddetektion

Im Fall von ferromagnetischer Messzahnrad-Anwendung muss der IC mit dem Südpol eines Permanentmagneten (maximal 4000Gs) vormagnetisiert werden. Beim Zusammenbau des Sensorsystems muss ein Magnet mit einem magnetischen Fluss von 1000Gs-4000Gs gewählt werden. Normalerweise wird die nicht markierte Seite des ICs zum Südpol des Magneten ausgerichtet. Der Magnet sollte an der Rückseite (nicht markierte Seite) des IC mit einem Klebstoff oder geeigneten Epoxy angebracht werden. Der Sensor CYGTS9803 ist über einen weiten Bereich des Magnet-Flusses "selbstanpassend", um jegliches Trimmen in der Anwendung zu vermeiden. Im Einschaltzustand des Chips wird der Ausgang auf

den hohen Zustand zurückgesetzt, unabhängig vom magnetischen Feld. Der Ausgang wird nur geändert, nachdem der erste min. Wert erkannt wurde. Der zurückgesetzte Zustand enthält keine Informationen über das Feld.


Wenn die Versorgungsspannung des Chips langsam ansteigt, ist der zurückgesetzte Zustand nicht stabil. In diesem Fall kann das Ausgangssignal eventuell nicht auf die höheren Pegel steigen.

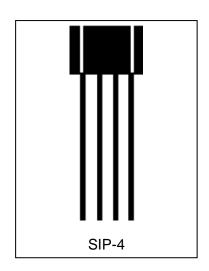

Der maximale Luftspalt hängt von folgendem ab:

- -der magnetischen Feldstärke (Magnet; vor Induktion)
- -dem verwendeten Zahnrad (Abmessungen, Material, etc.)

Es wird dringend empfohlen, einen externen Keramik Bypass-Kondensator von 10nF bis 1uF zwischen der Versorgung und der Masse des Hallsensors anzuschließen, um Hintergrundräusche zu reduzieren. Der Serienwiderstand in Kombination mit dem Bypass-Kondensator stellt einen Filter für EMC-Pulse dar. Der Pull-up-Widerstand sollte so gewählt werden, dass er den Strom des Ausgangs-Transistors begrenzt und der maximale kontinuierliche Ausgangsstrom des Sensors nicht überschritten wird.

Physikalische Eigenschaften

- exakte Gehäuse- und Leiterkonfiguration nach Angaben des Herstellers in den dargestellten Grenzen
- 2. die Dimension ist nominal, wenn keine Toleranz angegeben ist.



CYGTS9804 Selbsteinstellender Zweileiter Halleffekt Zahnradsensor IC

Der Sensor CYGTS9804 ist ein anspruchsvoller Hall-Effekt Zahnradsensor IC, mit einem auf dem Chip verbauten 12-Bit A/D Wandler und einer Logik, die eine digitale Abtastungs- und Halteschaltung darstellt. Ein separater 6-Bit-D/A-Wandler stellt eine feste Hysterese ein. Der Sensor hat keine Chopper-Verzögerung. Er verwendet eine einzelne Hall-Platte, die resistent gegen rotierende Ausrichtungsprobleme ist. Der Bias-Magnet kann 1000GS bis 4000Gs aufweisen. Wird das Signal abgetastet, erkennt die Logik eine Erhöhung oder Verringerung der Flussdichte. Der Ausgang wurde als Zweileiter-Stromschnittstelle entwickelt. Der Strom IDD (ausgeschaltet) beträgt 7mA (typisch), wenn der magnetische Fluss den Höhepunkt erreicht und um einen Betrag in Höhe der Hysterese gesenkt wird. Der Strom IDD (eingeschaltet) beträgt 14mA (typisch), wenn der Fluss den Minimalwert erreicht und um einen Zusatzbetrag gleich der Hysterese zugenommen hat.

Eigenschaften

- Hohe Empfindlichkeit
 - Zweileiter Stromschnittstelle
 - NULL-Drehzahlerfassung
 - Kurzschluss-Schutz
 - Unempfindlich gegen Orientierung
 - Breiter Betriebsspannungsbereich
 - Selbsteinstellender magnetischer Bereich
 - Integrierter 12 Bit A/D-Wandler
 - Hoher Drehgeschwindigkeitsbetrieb
 - Keine Chopper-Verzögerungs-Anwendungen
 - RoHS-konform

Anwendungen

Automobile und Schwerkraftlastwagen:

- Nockenwellen- und Kurbelwellengeschwindigkeit und -position
- Geschwindigkeitsmessung
- Tachometer
- Antriebssteuerung und Blockierschutz

Industrielle Anwendung

- Geschwindigkeit eines Kettenrads
- Geschwindigkeit und Hub des Kettentransportbands
- Melder einer Abstellvorrichtung
- Kostengünstiger Hochgeschwindigkeits-Näherungsschalter
- Tachometer, Zähler.

Magnetische Spezifikationen

DC Betriebsparameter T_A=-40°C bis 150°C, VDD=4.0V bis 24V (sofern nicht anders angegeben)

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Rück-Bias-Bereich	B _{Bias}	Betrieb	-30		4000	Gs
Linearer Bereich		V _{DD} =12V	500		5000	Gs
Hysteresis	B _{hys}		10		80	Gs

10Gs = 1mT

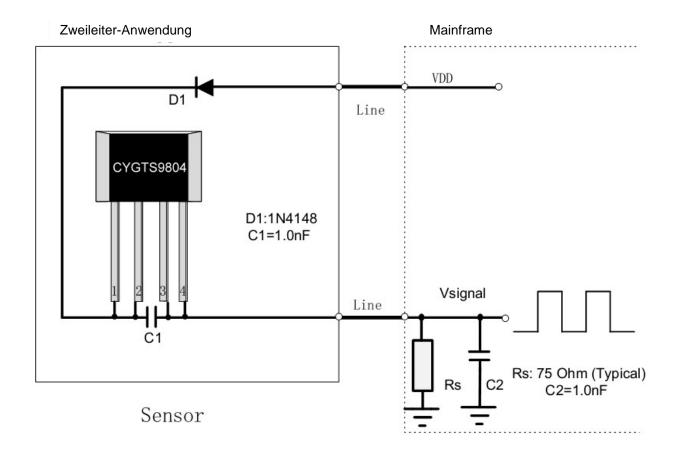
Tel.: +49 (0)8121-2574100 Fax: +49 (0)8121-2574101 Email: info@chenyang-gmbh.com http://www.chenyang-gmbh.com

DC Betriebsparameter T_A=-40°C bis 150°C, VDD=4.0V bis 24V (sofern nicht anders angegeben)

Parameter	Symbol	Testbedingungen	Min	Тур	Max	Einheit
Versorgungsspannung	V_{DD}	Betrieb	8.0	12	24	V
Versorgungsstrom (Ausschalt)	I _{DD}	V _{DD} =12V	5.5	7.0	8.5	mA
Versorgungsstrom (Einschalt)	I _{DD}	$V_{DD} = 12V$	12.0	14.0	16.5	mA
Spannungshochlaufstatus	Pos	$V_{DD} > V_{DD \text{ (min)}}$	Н	Н	Н	
Versorgungsstrom	I _{DD}	V _{out} =5.0V ~ 30V	3.0		20.0	mA
Ausgangsstromgrenze	I _{limit}	V _{DD} =12V	50	100	150	mA
Taktfrequenz	F _{clk}	Betrieb	400	500	600	kHz
Anstiegszeit am Ausgang	T _r	I _{DD} =4mA →16mA			1.0	μs
Abfallzeit am Ausgang	T _f	I _{DD} =16mA →4mA			1.0	μs
Frequenzbandbreite	BW	Betrieb			15	kHz
Thermischer Widerstand	RTH	Betrieb			200	°C/Watt

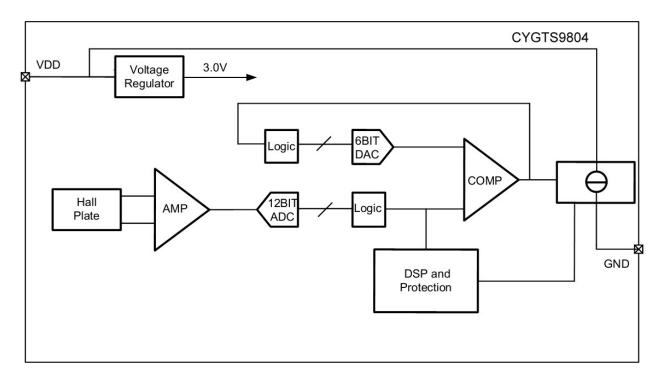
Absolute Grenzwerte

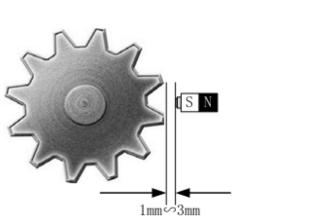
Parameter	Minimalwert	Maximalwert
Versorgungsspannung V _{DD}	-0.3V	30V
Ausgangsspannung Vo	-0.3V	30V
Versorgungsstrom I _{DD}		50mA
Ausgangsstrom I _{out}		30mA
Ausgangsstrom (Fehler) I _{fault}		200mA
Sperrschichttemperatur, T _J (5000h)		150°C
Sperrschichttemperatur, T _J (2000h)		160°C
Sperrschichttemperatur, T _J (1000h)		170°C
Sperrschichttemperatur, T _J (100h)		180°C
Betriebstemperaturbereich	-40°C	150°C
Lagertemperaturbereich	-65°C	150°C

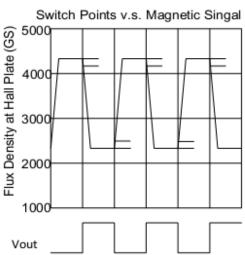

ESD (Emergency Shutdown System) Schutz des Notabschaltsystems

Menschliche Körpermodell-Test (Human Body Model HBM)

Parameter	Symbol	Max.	Einheit	Hinweis
ESD	V _{ESD}	8	kV	Nach Standard EIA/JESD22-A114-B-HBM

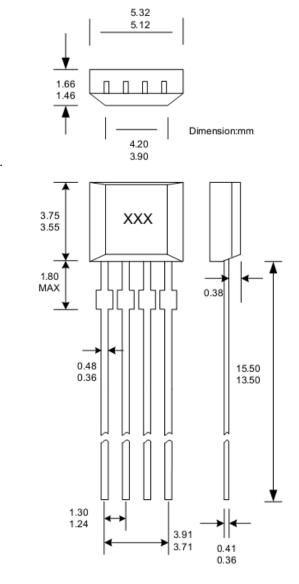

http://www.chenyang-gmbh.com

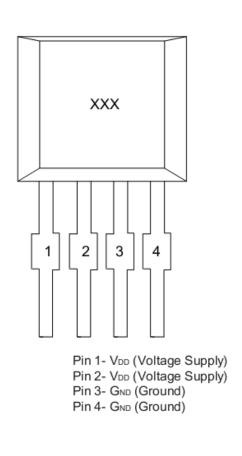



Stiftnummer	Name	Funktion
1	VDD	Versorgungsspannung
2	VDD	Versorgungsspannung
3	GND	Masse
4	GND	Masse

Zahnraddetektion

Im Fall von ferromagnetischer Messzahnrad-Anwendung muss der IC mit dem Südpol eines Permanentmagneten (maximal 4000Gs) vormagnetisiert werden. Beim Zusammenbau des Sensorsystems muss ein Magnet mit einem magnetischen Fluss von 1000Gs-4000Gs gewählt werden. Normalerweise wird die nicht markierte Seite des ICs zum Südpol des Magneten ausgerichtet. Der Magnet sollte an der Rückseite (nicht markierte Seite) des IC mit einem Klebstoff oder geeigneten Epoxy angebracht werden. Der Sensor CYGTS9804 ist über einen weiten Bereich des Magnet-Flusses "selbstanpassend", um jegliches Trimmen in der Anwendung zu vermeiden.


Im Einschaltzustand des Chips wird der Ausgang auf den hohen Zustand zurückgesetzt, unabhängig vom magnetischen Feld. Der Ausgang wird nur geändert, nachdem der erste min. Wert erkannt wurde. Der zurückgesetzte Zustand enthält keine Informationen über das Feld.


Wenn die Versorgungsspannung des Chips langsam ansteigt, ist der zurückgesetzte Zustand nicht stabil. In diesem Fall kann das Ausgangssignal eventuell nicht auf die höheren Pegel steigen.

Der maximale Luftspalt hängt von folgendem ab:

- -der magnetischen Feldstärke (Magnet; vor Induktion)
- -dem verwendeten Zahnrad (Abmessungen, Material, etc.)

Physikalische Eigenschaften

- 1. exakte Gehäuse- und Leiterkonfiguration nach Angaben des Herstellers in den dargestellten Grenzen
- 2. die Dimension ist nominal, wenn keine Toleranz angegeben ist